A review on biomass torrefaction process and product properties for energy applications

Jaya Shankar Tumuluru,1* Shahab Sokhansanj,2 J. Richard Hess,1 Christopher T. Wright,1 and Richard D. Boardman1

Abstract

Torrefaction of biomass can be described as a mild form of pyrolysis at temperatures typically ranging between 200 and 300°C in an inert and reduced environment. Common biomass reactions during torrefaction include devolatilization, depolymerization, and carbonization of hemicellulose, lignin, and cellulose. The torrefaction process produces a brown to black uniform solid product, as well as condensable (water, organics, and lipids) and noncondensable gases (CO_2 , CO, and CH_4). Typically during torrefaction, 70% of the mass is retained as a solid product, containing 90% of the initial energy content, while 30% of the lost mass is converted into condensable and noncondensable products. The system's energy efficiency can be improved by reintroducing the material lost during torrefaction as a source of heat. Torrefaction of biomass improves its physical properties like grindability; particle shape, size, and distribution; pelletability; and proximate and ultimate composition like moisture, carbon and hydrogen content, and calorific value. Compared to raw biomass, the carbon content and calorific value of torrefied biomass increases by 15–25% wt, while the moisture content decreases to <3% (w.b.). Torrefaction decreases the grinding energy by about 70%, and the ground torrefied biomass has improved sphericity, particle surface area, and particle size distribution. Torrefied biomass pelletization at temperatures of 225°C decreases the specific energy consumption and increases the capacity of the mill by a factor of 2. The loss of the OH functional group during torrefaction makes the material hydrophobic (i.e., loses the ability to attract water molecules) and more stable against chemical oxidation and microbial degradation. These improved properties make torrefied biomass particularly suitable for cofiring in power plants and as an upgraded feedstock for gasification.

¹Idaho National Laboratory, 2525 Fremont Avenue, Idaho Falls, Idaho 83415, USA ²Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennesse 37831, USA

*Author for correspondence. Email: jayashankar.tumuluru@inl.gov

Submitted: 5 August 2011; Revised: 16 September 2011; Accepted: 17 September 2011

DOI: 10.1089/IND.2011.0014

KEYWORDS: biomass torrefaction; torrefaction temperature and residence time; biomass reactions; off-gas composition; torrefied biomass physical, chemical, and storage properties

ABBREVIATIONS: CV, calorific value; GHG, greenhouse gas; TOP, torrefaction and pelletization

Introduction

he world is currently challenged to reduce dependence on fossil fuels and achieve a sustainable, renewable energy supply. Energy produced from biomass is considered carbon-neutral because the carbon dioxide released during conversion is already part of the carbon cycle.¹ Increasing biomass use for energy can help reduce greenhouse gas (GHG) emissions and meet the targets established in the Kyoto Protocol.² Energy from biomass can be produced from different thermochemical (combustion, gasification, and pyrolysis), biological (anaerobic digestion and fermentation), or chemical (esterification) processes, where direct combustion can provide a near-term energy solution.¹ The growing interest in biomass as a solid fuel includes combustion to produce steam for electrical power and commercial plant uses, as well as gasification to produce a combustible gas (large partial pressure of nitrogen and CO_2 , called producer gas) and syngas (carbon monoxide and hydrogen with low amounts of nitrogen and CO_2). Still, the use of either producer gas or syngas in modern reciprocating or gas turbines, or to produce higher value chemicals and fuels, is limited due to biomass feedstock preparation, accumulation logistics, and economics.

Limitations of biomass as fuel

Some of the inherent problems with raw biomass materials compared to fossil fuel resources (low bulk density, high moisture content, hydrophilic nature, and low calorific value [CV]) render raw biomass difficult to use on a large scale.¹ These limitations greatly impact logistics and final energy efficiency. Due to its low energy density compared to fossil fuels, very high volumes of biomass are needed, which compounds problems associated with storage, transportation, and feed handling at cogeneration, thermochemical, and biochemical conversion plants. High moisture in raw biomass is one of the primary challenges, as it reduces the efficiency of the process and increases fuel production costs.³ High moisture content in biomass leads to natural decomposition, resulting in loss of quality and storage issues such as off-gas emissions. Another consequence of high moisture content is the uncertainty it causes in biomass's physical, chemical, and microbiological properties. Irregular biomass shapes constitute another issue, especially during feeding in a cofiring or gasification system. In addition, biomass has more oxygen than carbon and hydrogen, making it less suitable for thermochemical conversion processes. Considered collectively, these properties make raw biomass unacceptable for energy applications.

To overcome these challenges and make biomass suitable for energy applications, the material must be preprocessed. One of the commonly used preprocessing operations is grinding, which helps to achieve a consistent particle size; however, the moisture content of the biomass limits the performance of many grinders.³ Furthermore, grinding can be very costly when smaller particle sizes are desired and, in some cases, impractical for biomass with high moisture content. High moisture content can also result in inconsistent particle sizes (especially when the particles are less than 2 mm), which may not react consistently, thereby reducing the efficiency and increasing the costs of the conversion process. Also, raw biomass is thermally unstable due to high moisture, which results in low CVs and inconsistent particle-size distribution issues when used in thermochemical processes such as gasification. This can lead to inconsistent products and the formation of condensable tars, which results in problems like gas-line blockage.4

A viable option is to pretreat the biomass before the end-use application. Pretreatment helps alter biomass's physical properties and chemical composition and makes it more suitable for conversion.⁵ The pretreatment can be a chemical, thermal, or mechanical process, like ammonia fiber explosion, torrefaction, and steam explosion, respectively. These pretreatment processes help alter the amorphous and crystalline regions of the biomass and bring significant changes in structural and chemical compositions. *Figure 1*

Figure 1. Pretreatment effect on lignocellulosic biomass⁵

shows how the pretreatment of biomass makes the biomass easier to convert.⁵

Torrefaction, which is a thermal pretreatment process, is a viable technology that significantly alters the physical and chemical composition of the biomass. Torrefaction is defined as slowly heating biomass in an inert environment and temperature range of 200-300°C. This process improves the physical, chemical, and biochemical composition of the biomass, making it perform better for cofiring and gasification purposes. Many researchers have studied the effect of torrefaction process time and temperature on the physical and chemical composition.⁶⁻¹⁵ However, a detailed literature review is lacking on the torrefaction process in terms of biomass reactions (such as depolymerization, devolatilization, and carbonization) and product properties. The primary focus of this research is to conduct a detailed literature review on biomass torrefaction, which includes (a) biomass reactions, including chemical and structural changes, (b) torrefaction product yields in terms of condensable, noncondensable, and solid product, and (c) the solid torrefied product's physical, chemical, and storage properties for energy applications.

Biomass components

The plant cell wall is the tough, usually flexible but sometimes fairly rigid layer that provides structural support and protection from mechanical and thermal stresses. The major components of the primary cell wall are cellulose (carbohydrates), hemicelluloses, and pectin. The cellulose microfibrils are linked via hemicellulosic tethers to form the cellulose-hemicellulose network, which is embedded in the pectin matrix. The outer part of the primary cell wall is usually impregnated with cutin and wax, forming a permeability barrier known as the plant cuticle.¹⁶

Cells and tissues of the plant body play an important role in the growth of the plant. The structural complexity of the plant body results from variations in the form and function of the cells and also from differences in the manner of combination of cells into tissue and a tissue system. The three different types of plant tissues are (1) meristematic tissue, (2) dermal tissue, and (3) vascular tissue.¹⁷

Secondary cell walls contain a wide range of additional compounds that modify their mechanical properties and permeability. The polymers that make up the secondary cell wall include (1) cellulose, (2) xylan, a type of hemicellulose, (3) lignin, a complex phenolic polymer that penetrates the spaces in the cell wall between cellulose, hemicellulose, and pectin components and which drives out water and strengthens the wall, and (4) structural proteins (approximately 1–5%), which are found in most plant cell walls.¹⁶ *Figure 2* shows the plant cell wall and lignocellulosic biomass composition.⁵ *Table 1* shows the typical lignocellulosic content of some plant and woody biomass.^{12,18}

Torrefaction process overview

Torrefaction is a thermal pretreatment technology. It is also defined as isothermal pyrolysis of biomass occurring in temperature ranges of 200–300°C and performed at atmospheric pressure in the absence of

Figure 2. Plant cell wall and lignocellulosic biomass composition⁵

Table 1. Typical lignocellulosic content of some plant materials ^{12,18}							
	LIGNOC	LIGNOCELLULOSIC CONTENT (%)					
PLANT MATERIAL	HEMICELLULOSE	CELLULOSE	LIGNIN				
Orchard grass (medium maturity)	40.0	32.0	4.7				
Rice straw	27.2	34.0	14.2				
Birch wood	25.7	40.0	15.7				
Reed canary grass	29.7	42.6	7.6				
Wheat straw	30.8	41.3	7.7				
Willow	14.1	49.3	20.0				

oxygen.⁶⁻⁷ Biomass torrefaction has been recognized as a technically feasible method of converting raw biomass into a solid that is suitable for commercial and residential combustion and gasification applications, given that it has high energy density, is hydrophobic, compactable, and grindable, and has a lower oxygen-to-carbon (O/C) ratio.

During the initial heating of lignocellulosic materials, water due to chemical reactions is removed through a thermocondensation process. This happens at temperatures between 160 and 180°C and results in the formation of CO_2 .⁷ At temperatures of 180–270°C, the

386 INDUSTRIAL BIOTECHNOLOGY OCTOBER 2011

reaction is more exothermal, and the degradation of hemicellulose continues. At these temperatures, biomass begins to brown and give off additional moisture, CO₂, and large amounts of acetic acid with some phenols that have low energy values.⁷

During torrefaction, the major decomposition reactions affect the hemicellulose. Lignin and cellulose also decompose in the range of temperatures at which torrefaction is normally carried out, but to a lesser degree.^{19–20} Torrefied biomass retains most of its energy and simultaneously loses its hygroscopic properties. At about 280°C, the reaction is entirely exothermic, and gas production increases, resulting in the formation of carbon monoxide, hydrocarbons like phenols and cresols, and other heavier products. For torrefaction, process temperatures over 300°C are not recommended, as these may lead to extensive devolatilization of the biomass due to the initiation of the pyrolysis process.⁸

Torrefaction process technique

Torrefaction is a thermochemical process involving the interaction of drying and incomplete pyrolysis. The different parameters that influence the torrefaction process are (a) reaction temperature, (b) heating rate, (c) absence of oxygen, (d) residence time, (e) ambient pressure, (d) flexible feedstock, (e) feedstock moisture, and (f) feedstock particle size. Biomass feedstock is typically predried to 10% or less moisture content prior to torrefaction. Particle size plays an important role in torrefaction in that it influences the reaction mechanisms, kinetics, and duration of the process, given a specific heating rate. The chemical reactions that occur when reactive intermediates are trapped in a thick matrix differ from the situations in which products can escape and be swept away in a gas stream. The duration of the process is basically adjusted to produce friable, hydrophobic, and energy-rich enhanced biomass fuel.

Temperature effect on the biomass components

Understanding plant components and their composition will help in understanding the biomass degradation reactions during the thermal pretreatment process. Exposure of biomass to elevated temperatures results in thermal degradation of its structure, which is often accompanied by loss of mass. The degree of thermal degradation depends on the duration of the heating and temperature.^{21–23} The various components in the biomass perform unique functions within the plant structure and interact differently depending on thermal treatment time and temperature.

Drying process variables that can influence the structural and chemical compositional changes include biomass composition, particle size, processing temperature and time, heating rate, gas composition, pressure, and flow rate.⁹ *Figure 3* provides a modified version of Bergman et al's description of the torrefaction process.¹⁰ The updated figure describes the structural changes, emissions due to bond cleavage, biomass reactions, and color changes at different temperature regimes ranging from 50–300°C.^{9,21-30}

		Nonreactive dryi in chemical c	ing (no changes composition)	Reactive drying (initiates changes in chemical composition)	Destructive drying (alters chemical composition)		
Water, organic emissions, and gases		Mostly surface moisture removal	Insignificant organic emissions	Initiation of hydrogen and carbon bonds breaking. Emission of lipophylic compounds like saturated and unsaturated fatty acids, sterols, terpenes, which have no capacity to form hydrogen bonds.	Breakage of inter- and i C-O and C-C bonds. Emi extractives (organic liqu oxygenated compounds) molecular mass carboxy (CH_3 -(CH_2)n-COOH), n= aldehydes, ether and gas	ntramolecular hydrogen, ission of hydrophilic id product having I. Formation of higher lic acids 10-30), alcohols, ses like CO, CO ₂ and CH ₄	
Cell and tissue		Initial disruption of cell structure	Maximum cell structure disruption and reduced porosity	Structural deformity	Complete destruction o loses its fibrous nature	f cell structure. Biomass and acts very brittle.	
Hemicellulose			Drying (A)	Depolymerization and recondensation (C)	Limited devolatilization and carbonization (D)	Exter devolati ar carbon (f	nsive lization nd ization E)
Lignin			A Glass transition/ softening (B)	с		D	E
Cellulose			А		С	D	E
Color changes in biomass	and the second se					orrefaction	
	5	0 10	0 15	50 20	00 25	50 30	00
				Temperature (°C)			

Figure 3. Structural, chemical, and color changes in biomass at different drying temperatures (modified version of Bergman et al's description of the torrefaction process¹⁰)

Based on Figure 3, at drying temperatures of 50–150°C (A), biomass loses moisture and shrinks. This also results in reduced porosity in the biomass, though the biomass may still have the ability to retain its structure if rewetted. This region is known as the nonreactive drying zone, where most of the chemical constituents of the biomass remain intact. At the higher end of these temperatures (i.e., 120-150°C) (B), the lignin softens and makes the material more suitable for densification, as the softened lignin acts as a binder. Temperature Regime C (i.e., 150–200°C), also called the reactive drying range, initiates the breakage of hydrogen and carbon bonds and results in the emission of lipophilic extractives and compounds due to thermal degradation of biomass solids. This temperature also results in structural deformity, from which biomass loses its ability to regain its original structure if rewetted. Also, according to Bergman and Kiel, depolymerization of hemicellulose results in shortened, condensed polymers with solid structures.^{10,31} Increasing the temperature further, as shown in *Regime D*, also called destructive drying (200–300°C), results in carbonization and devolatilization.

These temperatures represent the torrefaction process limits, which result in the disruption of most inter- and intramolecular hydrogen bonds and C-C and C-O bonds, resulting in the formation of hydrophilic extractives, carboxylic acids, alcohols, aldehydes, ether, and gases like CO, CO_2 , and CH_4 . At these temperatures, cell structure is completely destroyed as the biomass loses its fibrous nature and becomes brittle. Bergman reports further that increasing the temperature to >300°C results in extensive devolatilization and carbonization of the polymers.^{10,32} The blue line in *Figure 3* indicates that at temperatures lower than 250°C, the mass loss is at a minimum, as main biomass decomposition results from limited devolatilization and carbonization of the hemicellulose. At temperatures >250°C, the hemicellulose decomposes extensively into volatiles and a char-like solid product. Lignin and cellulose show limited devolatilization and carbonization.

Color change in the raw material can be a good means of describing the degree of torrrefaction. The color changes in the biomass at different temperature regimes indicate that the biomass turns brown to black at 150–300°C, which can be mainly attributed to chemical compositional changes. Lam et al quantified the severity of steam treatment based on color coordinates (such as *L*, *a*, and *b* values, which indicate lightness, redness/greenness, and yellowness/blueness, respectively) in their study.³³ The same authors also developed multilinear regression models to describe the chemical compositional changes like carbon and hydrogen based on color changes in steam-exploded wood pellets.³³ In addition, color measurement can be a good indicator for identifying impurities like bark, ash, or any other foreign material present in the biomass. For example, in the coffee bean roasting process, the change in the color is used as an indicator to define the changes in chemical composition.³⁴ Typical thermal treatment process variables (mass and energy yields at different temperature regimes) are given in *Table 2*.

During torrefaction at 200–300°C, mass loss predominantly results from the loss of moisture and decomposition (devolatilization), particularly hemicellulose and some lignin. Xylan-based hemicellulose generally decomposes around 250–280°C. Lignin decomposition proceeds more slowly, but gradually increases starting at about 200°C.¹¹ However, the thermal decomposition behavior of individual biomass polymers may be different from the strongly integrated structure of whole biomass. *Figure 4* indicates the typical weight loss in cottonwood as a function of temperature.³⁵ The figure clearly shows that the weight loss and degradation of biochemical composition typically starts at temperatures higher than 200°C.

Biomass reactions

Cell and tissue: Changes in biomass cells and tissues, which lead to structural changes, typically happen at drying temperatures of 50–150°C. Terziev observed that different thermal treatments have a distinct effect on wood microstructure and properties.³⁶ Some studies on drying wood in a 100–150°C temperature range indicated significant cell wall shrinkage and a pore size volume decrease, which is attributed to moisture loss.³⁷ The drying damage manifests as irregu-

Table 2. Thermal treatment process variables for different temperature regimes								
TEMPERATURE (°C)	TIME (min)	PROCESS REACTIONS	HEATING RATE (°C/min)	DRYING ENVIRONMENT AND PRESSURE	MASS YIELD (%)	ENERGY YIELD (%)		
50-150	30-120	Nonreactive drying (moisture removal and structural changes)	<50	Air and ambient pressure	~90-95	Not significant		
150-200	30-120	Reactive drying (moisture removal and structural damage due to cell wall collapse)	<50	Air and ambient pressure	~90	Needs to be researched		
200-300	<30	 Destructive drying Devolatilization and carbonization of hemicellulose Depolymerization and devolatilization/softening of lignin Depolymerization and devolatilization of cellulose 	<50	Inert environment and ambient pressure	~70	~90		

larly distributed micro-cracks within the biomass cell wall. Three mechanisms result in structural changes to the biomass due to drying. First, initially elevated temperatures induce thermal degradation of the biomass components, which results in formation of cavities within the cell.^{21-22,38} Second, the pore wall starts to collapse because water has been removed. This will result in closure of the pore wall due to irreversible hydrogen bonding.³⁹⁻⁴⁰ Third, the anisotropic drying shrinkage of cell wall layers results in drying stresses, which can damage wood's cell walls.⁴¹⁻⁴³

Kauman explained that total cell wall collapse during drying can be due to liquid tension collapse and stress collapse, which lead to biomass shrinkage.⁴⁴ It has been reported that the collapse intensity increases with increased temperature during drying.⁴⁵⁻⁴⁸ Borrega and Kärenlampi stated that exposure of wood to temperatures of >150°C during drying may cause thermal degradation of its structure, often accompanied by loss of mass.³⁸ The degree of structural damage depends on tree species as well as process parameters, such as duration of treatment, temperature, and relative humidity.²¹⁻²³ All structural changes observed in the biomass due to moisture loss influence the biomass's mechanical properties, like bulk density and grindability.

Hemicellulose: Hemicellulose is a branched polymer (also a polysaccharide) that consists of shorter chains (500–3000 sugar units) as opposed to the 7000–15000 glucose molecules per unbranched polymer observed in cellulose, as shown in *Figure 2*. Hemicellulose accounts for about 25–35 wt% of biomass. The polysugars that form hemicelluloses vary differently among woods and much more among plants. In the case of deciduous wood, the hemicellulose fraction is very different. Deciduous wood contains 80–90% of 4–0-methylglucoronoxylan (referred to as xylan), whereas coniferous wood (most softwood) contains 60–70% of glucomannan and 15–30 wt% of arabinogalactan.¹⁸

Hemicellulose undergoes major decomposition reactions at torrefaction temperatures of 200–300°C, resulting in different

condensable and noncondensable products. Thermal degradation of hemicellulose initiates at 150°C, with the majority of weight loss occurring above 200°C, depending on the chemical nature of the hemicellulose and the relationship with lignin within the cell.^{18,49} Compared to cellulose, hemicellulose generally evolves as light volatiles, producing fewer tars and less char. Many researchers have noted that major hemicellulose decomposition reactions occur at temperatures between 220°C and 280°C.9 Native hemicellulose is partly depolymerized by hydrolysis and/or thermal chain scission to provide "reacting" hemicellulose. This intermediate is decomposed by acid and radical reactions to yield many substances (e.g., furfural) that recombine to form torrefied hemicellulose. Water and acids form during the above reactions and are released into the reaction environment.⁵⁰ Some of this water may be reused to depolymerize hemicellulose or to release acids from the hemicellulose by hydrolysis of acetate groups. These radical reactions can also result in the formation of acids.

Cellulose: Cellulose is a high-molecular-weight polymer (molecular weight of 10⁶ and higher) that makes up the fibers in wood and other biomass. The multiple hydroxyl groups on the glucose residues from one chain form hydrogen bonds with oxygen molecules on the same or a neighboring chain. These chains are firmly held together side by side, resulting in the formation of microfibrils with high tensile strength. This strength is important in cell walls, where the microfibrils are meshed into a carbohydrate matrix, conferring rigidity to plant cells. Cellulose strands with hydrogen bonds (dashed within and between cellulose molecules) are shown in *Figure 2*.

Cellulose degradation occurs between 240 and 350°C, resulting in anhydrous cellulose and levoglucosan.¹⁸ The crystalline structure resists thermal depolymerization better than do unstructured hemicelluloses. Amorphous regions in the cellulose contain waters of hydration and hold free water within the plant. When heated rapidly, this water is converted to steam, which can further rupture the cellulose structure.

Cellulose also undergoes polymer restructuring similar to hemicellulose through depolymerization reactions, but to a lesser extent. The water and acids released due to hemicellulose depolymerization can result in more cellulose degradation. This disordered cellulose is thermostable and contains furan, aliphatic, and keto groups.

Lignin: Lignin is an amorphous, highly branched, cross-linked macromolecular polyphenolic resin with no exact structure. Lignin fills the spaces in the cell wall between cellulose, hemicellulose, and pectin components. It is covalently linked to hemicellulose and thereby cross-links different plant polysaccharides, conferring mechanical strength to the cell wall and, by extension, to the plant as a whole. It is relatively hydrophobic and aromatic in nature. The degree of polymerization in nature is difficult to measure since it is fragmented during extraction and the molecule consists of various types of substructures that appear to repeat in a haphazard manner. An example of a lignin polymer is provided in *Figure 2*.

Lignin decomposes when heated to 280–500°C, producing phenols via the cleavage of ether bonds and scissioning of carboncarbon bonds.^{18,49} Lignin is difficult to dehydrate and thus converts to char more than cellulose or hemicellulose. Evans et al showed that lignin releases some small phenolic fragments within the torrefaction temperature range.⁵¹ Grafting torrefied hemicellulose onto cellulose and/or lignin may also be possible, indicating that all of the biomass polymers can participate in torrefaction.⁹ The biomass decomposition reactions at different temperature regimes are given in *Figure 5.*²⁸

Biomass
$$-$$
 char \rightarrow CO₂+CO+H₂ <250°C
 $-$ char+tar+CO₂+CO+H₂O+H₂+CH₂+C_nH_m >400°C
 $-$ H₂+CH₂+C_nH_m >700°C+residence time

Figure 5. Biomass decomposition reactions at different temperature regimes²⁸

Organic extractables: Organic extractables include fats, waxes, alkaloids, proteins, phenolics, simple sugars, pectins, mucilages, gums, resins, terpenes, starches, glycosides, saponins, and essential oils.¹⁸ Again, these vary in amount and composition depending on the type of biomass. Hence, devolatilization behavior depends on the amount and location of the biomass extractables.

Torrefaction products

During torrefaction, three different products are produced: (1) brown to black uniform solid biomass, which is used for bioenergy applications, (2) condensable volatile organic compounds comprising water, acetic acid, aldehydes, alcohols, and ketones, and (3) noncondensable gases like CO₂, CO, and small amounts of methane. Release of these condensable and noncondensable products results in changes in the physical, chemical, and storage properties of biomass. Several studies have also investigated the physical properties and chemical composition of the liquids and gases released during torrefaction.^{11,14,52} Bergman et al provide an overview of the torrefaction products, based on their states at room temperature, which can be solid, liquid, or gas, as shown in Figure 6.10 The solid phase consists of a chaotic structure of the original sugars and reaction products. The gas phase includes gases that are considered permanent gases, and light aromatic components such as benzene and toluene.

The condensables, or liquids, can be further divided into four subgroups: (1) reaction water produced from thermal decomposition, (2) freely bound water that has been released through evaporation, (3) organics (in liquid form), which consist of organics produced during devolatilization and carbonization, and (4) lipids, which contain compounds such as waxes and fatty acids.

Condensable and noncondensable products are emitted from the biomass based on heating rate, torrefaction temperature and time, and biomass composition. The emission profiles of these products greatly depend on the moisture content in the biomass.

Figure 6. Products formed during torrefaction of biomass¹⁰

At high moisture content, some of the surfactants present in the biomass (oleic acid, fatty acids, and resin acids) help solubilize the monoterpenes in water and transport them through the wood matrix. At low moisture content, the emission of different compounds like terpenes is driven by vapor pressure and temperature. During torrefaction the raw material loses most of its moisture and other volatiles, which have a low heat value. Many researchers have worked on identifying gas composition in terms of quantity and quality.^{7,53} The type and amount of gas released as off-gas during torrefaction depend on the raw material type (i.e., anatomical, molecular, and chemical composition) and torrefaction process conditions, including the process temperature and residence time.

Mass and energy yield

A typical mass-and-energy distribution is shown in *Table 3*, which illustrates the preservation of mass and energy in the solid product. One can see that besides the solids, mostly water is produced during torrefaction, and the energy content of the volatiles is mainly preserved in the lipids and organics. Torrefaction operating conditions and biomass properties have a significant impact on the amount of solid residue remaining and the volatile and gaseous products produced during torrefaction. Thus, solid, volatiles, and gases analysis and results from different studies are not exactly the same.

Prins et al conducted several torrefaction mass balances experiments.¹⁴ This data is reproduced in *Figure 7*, which shows a large difference in product distribution for different types of biomass. Larch has the largest yield of solid product and smallest gas and liquid yield, straw has higher gas and liquid fractions than woody biomass, and willow is between woody biomass and straw. It was also found that an increase in torrefaction temperature leads to a decrease in solid char yield and an increase in the volatile fractions, including liquid and noncondensable gases, which is a result of the competition between charring and devolatilization reactions that become more reactive at higher temperatures.

REACTION PRODUCTS	MASS YIELD	ENERGY YIELD (LOWER HEATING VALUE [LHV], daf) (%)					
Solid	87.5	94.9					
Lipids	1.4	3.4					
Organics	1.7	1.6					
Gases	1.4	0.1					
Water	8.0	0.0					
Note: (daf: dry and ash-free	basis)						

Table 3. Mass and energy distribution of willow at 280°C for 17.5 min reaction time $^{\rm 31}$

Comparing the conversion of agricultural residues (i.e., rice straw and rape stalk) to woody biomass from the literature, the solid-toliquid conversion of the former is much higher than that of the latter under the same torrefaction conditions (i.e., temperature and residence time).¹⁰ This is due to the higher volatile matter content in the agricultural residues and the decomposition of hemicellulose, the main fraction decomposed in the torrefaction temperature range. Bridgeman et al drew similar conclusions where the mass yield (dry ash-free) was 55.1, 61.5, and 72.0% for wheat straw, reed canary grass, and willow, respectively, at 290°C for 30 min.¹²

Condensable products

Water is the main condensable product of torrefaction. It is released during drying when moisture evaporates and during dehydration reactions between organic molecules. Acetic acid is also a condensable torrefaction product that mainly originates from acetoxy- and methoxy-groups present as side chains in xylose units

Figure 7. Overall mass balance of several torrefaction experiments¹⁴

Figure 8. Condensable volatiles yields during torrefaction¹⁴

(part of the hemicellulose fraction). Prins et al proved that smaller quantities of formic acid, lactic acid, furfural, hydroxyl acetone, and traces of phenol are also present in the volatile component.¹⁴ Yields of most of the condensable volatiles will increase with the torrefaction temperature, as is shown in *Figure 8*. As a result, more energy is transferred to the volatiles in the form of combustibles, such as methanol and acetic acid.

Noncondensable products

The major gases formed during torrefaction are carbon dioxide and carbon monoxide with traces of other gases, as is shown in *Figure 9*.^{10,54} Carbon monoxide is the main source of the noncondensable CV of torrefaction products.

The formation of CO₂ may be explained by decarboxylation of acid groups in wood and other herbaceous biomass. The formation of CO cannot be explained by dehydration or decarboxylation reactions. The increased CO formation is reported to be caused by the reaction of carbon dioxide and steam with porous char.⁵⁵ Traces of hydrogen and methane are also detected in noncondensable products. A gas composition comparison between wood and agricultural residues indicates that the latter is characterized by higher

Figure 10. Noncondensable volatiles yields for larch and straw¹⁴

CO₂ production.^{11,14,52} In addition, a kinetic study on the generation of noncondensable gases shows that the gases are formed through parallel independent first-order reactions.¹³

The composition of the noncondensable volatiles produced during different torrefaction conditions is shown in *Figure 10*. The ratio of C0 to CO_2 increased with temperature because cellulose and lignin decompose at higher temperatures.¹⁴

Figure 11 shows the gas composition of the noncondensable products over time, which do not total 100% because only the main components (CO_2 and CO) are shown.¹⁴ These results were obtained by torrefaction of larch and willow at 250°C for 5, 15, and 30 min. It was found that the ratio of CO_2 to CO decreases with time, in line with the theory that CO is formed in a secondary reaction.¹⁴

Torrefaction process efficiency

The torrefaction process increases the energy density and improves the overall fuel properties of the torrefied product. However, torrefaction is an energy-intensive pretreatment operation due to the high temperatures used in the process. Reusing the excess heat generated in the process will have a significant impact on the overall efficiency of the system. Also, both the condensable and noncondensable volatiles have a significant impact on the energy efficiency of the process. To achieve high energy efficiency at low cost, innovative torrefaction technologies have been developed to capture excess heat and volatile energy; the Energy Research Center of the Netherlands' (ECN's) torrefaction process is one of the most mature, as is shown in *Figure 12.*¹⁰

The depicted process layout is based on the direct heating of biomass during torrefaction by means of recycled hot gas. The hot gas consists of the torrefaction gas and is re-pressurized to compensate for the pressure drop in the recycle loop. It heats the recycled gas to deliver the required heat demand in the torrefaction reactor. Combustion of the liberated torrefaction gas produces the necessary heat for torrefaction and pre-drying. A utility fuel can be used when the energy content of the torrefaction gas is insufficient

Figure 11. Change in gas composition over time for torrefaction at ${\rm 250^oC^{14}}$

to thermally balance the torrefaction process and to provide stability and control of the combustion process. Bergman et al identified this process concept as the most promising for torrefaction, which achieves autothermal operation when the total heat demand of the process (drying and torrefaction) is balanced by the energy content of the torrefaction gas.¹⁰ The torrefaction conditions (temperature and residence time) are the crucial variables to tune the thermal balance (i.e., the energy yield of torrefaction and hence the energy content of the torrefaction gas).

The torrefaction gas consists of a wide variety of combustible organic components. However, the main components of torrefaction gas are incombustible (water and CO_2). The given product distribution in *Figures 6–8* shows that the torrefaction gas is rather wet. Even when completely dry biomass is torrefied, the torrefaction gas is expected to have a water content of over 50% wt and a CO_2).

Figure 12. The envisaged conceptual structure of ECN's torrefaction process¹⁰

Figure 13. Typical experimental results of torrefaction of willow⁵⁴

content of about 10% wt, which makes up a total of 60% wt of incombustible components of the total emissions. The exact amount is determined by specific conditions and by the moisture content of the biomass feed.

Bergman et al^{10,11} and Bergman³² further examined the CV of the torrefaction gas experimentally, while mass-and-energy balance thermal-process efficiency, autothermal operation, and combustibility of the torrefaction gas were investigated by means of process simulations. In their studies, the yield of reaction water varied between 5 and 15% wt, resulting in a concentration of 50–80% wt in the torrefaction gas (excluding free water from the feedstock). The reaction water yield increased with residence time and temperature, while its concentration decreased. Consequently, the relative contribution of combustible products increases with increased temperature and residence time, as does the CV, which ranges from 5.3–16.2 MJ/Nm³.

Despite the high water content of the torrefaction gas, the CV is relatively high. It can be compared to producer gas from air-blown biomass gasification (4–7 MJ/Nm³) and to syngas from an indirectly heated gasification process (15–20 MJ/Nm³). Based on this comparison, the torrefaction gas should be combustible and can play an important role in the torrefaction process.^{10,11,32} Typical experimental results for torrefaction mass and energy yields and gas-phase composition for willow are given in *Figure 13*.

Solid torrefied biomass properties

Torrefaction of biomass significantly changes its physical and chemical properties like moisture content, density, grindability, pelletability, hydrophobicity, CV, proximate and ultimate composition, and storage behaviors in terms of off-gassing, spontaneous combustion, and self heating.¹⁵

Physical properties Moisture content

Normally, feedstock moisture content ranges from 10-50%, but because torrefaction is a deep drying process, moisture content is reduced to 1-3% on a weight basis, depending on the torrefaction conditions.³¹ Typically, torrefaction achieves an equilibrium moisture content of 3% and a reduction of mass by 20-30% (primarily by release of water, carbon oxides, and volatiles), while retaining 80-90% of the wood's original energy content.9 Reduction in moisture during torrefaction provides three main benefits: (1) reduced moisture level for the conversion process, (2) reduced transportation costs associated with moving unwanted water, and (3) the prevention of biomass decomposition and moisture absorption during storage and transportation.

Table 4. Bulk density (dry basis) of *Eucalyptus grandis* wood in three different treatments⁵⁶

TREATMENT	BULK DENSITY (g/cm ³)	PERCENTAGE LOSS
Control*	0.85ª	_
220°C	0.83ª	2.35
250°C	0.79 ^b	7.06
280°C	0.73°	14.12

Note: Means followed by the same letter are statistically similar at the 5% probability level.

*Average moisture content of control treatment = 15%.

Bulk and energy density

Mass loss in the form of solids, liquids, and gases during torrefaction cause the biomass to become more porous. This results in significantly reduced volumetric density, typically between 180 and 300 kg/m³, depending on initial biomass density and torrefaction conditions.³¹ Oliveira-Rodrigues and Rousset's study on the effect of torrefaction on energy properties of *Eucalyptus gran-dis* wood indicated a bulk density loss of 14.12% when the wood was torrefied at 280°C for 30 min.⁵⁶ *Table 4* shows the loss in bulk density for torrefaction temperatures ranging from 220–280°C.⁵⁶ In spite of reduced bulk density, the energy density increases. Bergman et al observed that the calorific density of pine woodchips increased from 11–20 MJ/kg.¹¹ Many researchers have observed that the energy density of both lignocellulosic and woody biomass increased significantly after torrefaction (>60%).

Grindability

Biomass is highly fibrous and tenacious in nature; fibers form links between particles and make handling the raw ground samples difficult. During torrefaction, the biomass loses its tenacious nature,

Figure 14. Grinding energy of beech as a function of torrefaction duration, obtained with a Retsch ZM1 ultracentrifugal mill equipped with a 500-mm grid⁵⁸

which is mainly associated with the breakdown of the hemicellulose matrix and depolymerization of the cellulose, resulting in decreased fiber length.^{10,31} Particle length is also decreased, but not the diameter per se, resulting in better grindability, handling characteristics, and flowability through processing and transportation systems. Also during the torrefaction process, the biomass tends to shrink, become lightweight, flaky, and fragile, and lose its mechanical strength, making it easier to grind and pulverize.¹

Bergman and Kiel conducted studies on the energy requirements for grinding raw and torrefied biomass like willow, woodcuttings, demolition wood, and coal using a heavy-duty cutting mill.³¹ They concluded that power consumption reduces dramatically when biomass is first torrefied. This reduction ranges from 70–90%, based on the conditions under which the material is torrefied. Bergman and Kiel also found that the capacity of the mill increases by a factor of 7.5–15%.³¹ The most important observation they made was that the size-reduction characteristics of torrefied biomass were similar to coal. Phanphanich and Sudhagar also observed a decrease in the grinding energy from 237.7–37.6 kWh/t, from raw to torrefied forest biomass at 300°C for 30 min.⁵⁷ *Figure 14* gives the typical grinding energy reduction for torrefied wood.⁵⁸

Particle size distribution, sphericity, and particle surface area

Particle-size distribution curves, sphericity, and surface area are important parameters for understanding flowability and combustion behavior during cofiring. Many researchers observed that ground, torrefied biomass produced narrower, more uniform particle sizes compared to untreated biomass due to its brittle nature, which is similar to coal. Phanphanich and Sudhagar studied torrefied pine chips and logging residues and found that smaller particle sizes are produced compared to untreated biomass.⁵⁷ In addition, they observed that the particle distribution curve was skewed towards smaller particle sizes with increased torrefaction temperatures.⁵⁷

Torrefaction also significantly influences the sphericity and particle surface area. Phanphanich and Sudhagar's results also indicated that sphericity and particle surface area increased as the torrefaction temperature was increased up to 300°C.⁵⁷ For ground, torrefied chips, they found that the sphericity increased from 0.48% to 0.62%, concluding that an increase in particle surface area or decrease in particle size of torrefied biomass can be desirable properties for efficient cofiring and combustion applications.⁵⁷ Also, the bulk and particle densities of ground torrefied biomass increase because the inter- and intraparticle voids generated after milling are reduced.^{59–60} Research studies have indicated that ground torrefied material results in a powder with favorable size distribution and spherical particles, allowing torrefied powder to meet the smooth fluidization regime required for feeding it to entrained-flow processes (i.e., gasifier and pulverized coal).

Pelletability

Variability in feedstock quality due to differences in the types of raw materials, tree species, climatic and seasonal variations,

storage conditions, and time significantly influence the quality of biopellets.⁶¹ Torrefying the biomass before pelletization, however, produces uniform feedstock with consistent quality.

Lignin in the biomass is considered to be the basic binding agent; thus, the pelletability of any biomass is evaluated based on lignin content. In general, higher amounts of lignin improve binding and reduce the severity of process conditions. The torrefaction process opens more lignin-active sites by breaking down the hemicellulose matrix and forming fatty unsaturated structures, which creates better binding. Densification following torrefaction has been considered by several researchers.^{9,11,32,62-63} These studies indicate that, compared to raw biomass pelletization, the required pressure and energy consumption can be reduced by a factor of 2 when the material is densified at a temperature of 225°C. In addition, densification tests on torrefied biomass using a Pronto-Press indicated that the density of torrefied and pelletized material varied in the range of 750-850 kg/m³ compared to conventional wood pellets, which are in the range of 520-640 kg/m³. The energy density and CV have also increased by approximately 70-80%, which is comparable to sub-bituminous coal.³¹ Figure 15 shows the flow diagram for the TOP process that Bergman proposed.32

Chemical compositional changes

Besides improving physical attributes, torrefaction also results in significant changes in proximate and ultimate composition of the biomass and makes it more suitable for fuel applications. Sadaka and Negi's¹⁵ study on torrefaction of wheat straw, rice straw, and cotton gin waste at 200, 260, and 315°C for 60, 120, and 180 min, respectively, concluded that moisture content was reduced at the conditions (260°C for 120 min) for all three feedstocks by 70.5, 49.4, and 48.6%, and the heating value increased by 15.3, 16.9, and 6.3%, respectively. Zanzi et al, in their study on miscanthus torrefaction, made similar observations, where increasing temperature from 230 to 280°C and time from 1-3 h increased the carbon content and decreased the hydrogen, nitrogen, and oxygen content.7 At 280°C, the carbon content increased to about 52% from an initial value of 43.5%, while hydrogen and nitrogen content decreased from 6.49 to 5.54% and 0.90 to 0.65%, respectively, for 2 h of torrefaction. In general, increased torrefaction temperatures result in increased carbon content and decreased hydrogen and oxygen content due to the formation of water, CO, and CO₂.

This process also causes the hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios to decrease with increasing torrefaction temperature and time, which results in less smoke and water-vapor formation and reduced energy loss during combustion

Figure 16. Van Krevelen diagram for torrefied willow and miscanthus $^{\rm 64}$

and gasification processes. In torrefaction studies of reed canary grass and wheat straw torrefaction at 230, 250, 270, and 290°C for 30 min residence times, Bridgeman et al found that the moisture content decreases from an initial value of 4.7-0.8%.12 They found that carbon increased 48.6-54.3%, while the hydrogen and nitrogen content decreased from 6.8-6.1% and 0.3-0.1%, respectively. In another study, Bridgeman et al made a Van Krevelen diagram for torrefied willow and miscanthus, as is shown in Figure 16.64 It is clear that at higher temperatures and residence times, the atomic O/C and H/C ratios are closer to that of lignite coal. Table 5 shows the effect of different torrefaction temperatures on ultimate compositional changes in woody and herbaceous biomass.¹² Table 6 shows the physiochemical composition of pine and heat-treated pine at torrefaction temperatures from 240-290°C and indicates that as torrefaction temperature increases, fixed carbon increases and volatiles and moisture content decrease.65

Calorific value

Biomass loses relatively more oxygen and hydrogen than carbon during torrefaction, which increases the calorific value of the product.⁶ The net CV of torrefied biomass is 18–23 MJ/kg (lower heating value [LHV], dry) or 20–24 MJ/kg (higher heating value [HHV], dry).^{11,66} The mass and energy in the torrefied biomass is preserved in the solid product for a long time, as the material does not degrade with time. *Table 5* provides the ultimate analysis and elemental composition of torrefied woody and herbaceous biomass proper-

Table 5. Ultimate analysis, moisture content, and HHV (dry ash free basis) of untreated and torrefied biomass ¹²							
	RAW	TORREFACTION TEMPERATURE					
REED CANARY GRASS	0°K	503°K	523°K	543°K	563°K		
C (%)	48.6	49.3	50.3	52.2	54.3		
Н (%)	6.8	6.5	6.3	6.0	6.1		
N (%)	0.3	0.1	0.0	0.1	0.1		
O (%)	37.3	N/A	37.0	37.3	36.3		
Moisture (%)	4.7	2.5	1.9	1.3	1.2		
CV (kJ/kg)	19,500	N/A	20 000	20800	21 800		
WHEAT STRAW							
C (%)	47.3	48.7	49.6	51.9	5.6		
H (%)	6.8	6.3	6.1	5.9	1.0		
N (%)	0.8	0.7	0.9	0.8	27.6		
O (%)	37.7	N/A	35.6	33.2	0.8		
Moisture (%)	4.1	1.5	0.9	0.3	0.8		
CV (kJ/kg)	18,900	19 400	19800	20 700	22 600		
WILLOW							
C (%)	49.9	50.7	51.7	53.4	54.7		
H (%)	6.5	6.2	6.1	6.1	6.0		
N (%)	0.2	0.2	0.2	0.2	0.1		
O (%)	39.9	39.5	38.7	37.2	36.4		
Moisture (%)	2.8	0.5	0.1	0.1	0.0		
CV (kJ/kg)	20,000	20 600	20 600	21 400	21 900		

Table 6. Physiochemical analysis^a of pine and heat-treated pine⁶⁵

T (°C)♭	P ^c	240	250	260	270	290
Fixed carbon, %	20.64	23.55	25.59	25.69	29.38	35.39
Elementary analysis						
C, %	50.98	51.14	51.93	53.78	53.57	58.08
0, %	42.80	42.70	42.18	40.66	40.67	36.40
Pentosans, %	9.61	5.93	5.90	3.10	2.54	1.40
Lignin, %	22.84	24.90	28.72	33.44	39.23	53.47
Extractables, % ^d	14.67	8.19	14.09	19.35	16.49	17.98
Moisture, % ^e	10.80	5.66	4.08	3.96	3.76	3.88
Yield, %	-	86.2	81.8	75.7	66.4	48.8

^aIn each case, the mean result given was obtained from a minimum of four different experiments. ^bTorrefaction time: 30 min. ^cNative pine. ^dNeutral-solvent extractables (ethanol, benzene, boiling water). ^cPowder samples left at the laboratory atmosphere still had a constant humidity.

ties as compared to raw materials. Sadaka and Negi also observed that the highest heating value of 22.75 MJ/kg, or 9761 BTU/lb, was achievable at torrefaction conditions of 315°C and 3 h.¹⁵

Storage aspects of torrefied biomass

Off-gassing

Storage issues like off-gassing and self-heating may also be insignificant in torrefied biomass, as most of the solid, liquid, and gaseous products that are chemically and microbiologically active are removed during the torrefaction process. Kuang et al's⁶⁷ and Tumuluru et al's ⁶⁸ studies on wood pellets concluded that high storage temperatures of 50°C can result in high CO and CO₂ emissions, and the concentrations of these off-gases can reach up to 1.5% and 6% for a 60-day storage period. These emissions were also found to be sensitive to relative humidity and product moisture content. The same researchers at the University of British Columbia conducted studies on off-gassing from torrefied woodchips and indicated that CO and CO₂ emissions were very low – nearly one-third that of regular woodchips at room temperature (20°C). This could be due to low moisture content and reduced volatile content, which could result in less reactivity with the storage environment.

Hydrophobicity

In general, the uptake of water by raw biomass is due to the presence of OH groups. Torrefaction produces a hydrophobic product by destroying OH groups and causing the biomass to lose the capacity to form hydrogen bonds.⁶⁹ Due to these chemical rearrangement reactions, nonpolar unsaturated structures are formed, which preserve the biomass for a long time without biological degradation, similar to coal.^{31,70}

Bergman determined the hydrophobicity of torrefied pellets by immersing them in water for 15 h.³² Their hydrophobic nature was evaluated based on the state of the pellet after this period and by

Figure 17. Moisture uptake by the torrefied wood pellets made from a 0.8 mm particle size⁷¹

gravimetric measurement to determine the degree of water uptake. Bergman's study indicated that raw pellets swelled rapidly and disintegrated into original particles.³² Torrefied pellets produced under optimal conditions, however, did not disintegrate and showed little water uptake (7–20% on a mass basis). Bergman also concluded that torrefaction conditions play a vital role in the hydrophobic nature of biomass.³² Sokhansanj et al compared the moisture uptake of the torrefied biomass to the untreated biomass and found a 25% decrease in water uptake when compared to the control, as shown in *Figure 17.*⁷¹

Biomass is porous, often moist, and prone to off-gassing and self-heating due to chemical oxidation and microbiological activity. In general, the biomass moisture content plays an important role in initiating chemical and microbial reactions. Moisture content coupled with high storage temperatures can cause severe off-gassing and self-heating from biomass-based fuels. Another important storage issue for ground torrefied biomass is its reactivity in powder form, which can result in fire during storage. It is preferred to store the torrefied biomass in an inert environment to avoid incidents of spontaneous combustion. In his laboratory-scale combustion studies of torrefied wood, Kiel found that it is highly reactive, similar to coal.⁵³

Table 7 shows the product characteristics of torrefied biomass compared to coal and wood, revealing that torrefied wood closely resembles charcoal. The major difference between charcoal and torrefied wood is the volatile content. Volatiles are lost during charcoal production, which also means a possible loss of energy.⁷² On the other hand, during torrefaction, most of the volatiles are retained. It is also recommended that every form of carbonization be avoided during torrefaction. As *Table 7* shows, torrefied pellets have product characteristics, like handling, milling, and transport requirements, similar to coal.⁶⁵ Torrefied pellets allow for higher cofiring percentages up to 40% due to matching fuel properties with coal, and they can use the existing equipment setup for coal.

Torrefied biomass applications

Pulverized fuel combustion in coal-fired power stations and entrained-flow gasification are particularly interesting product outlets for biomass. In both applications, biomass has to be fed to the reactor as a powder, which is difficult, costly, and achievable only at very low capacity in classical coal mills. Due to this limitation, wood pellets are currently the state-of-the-art for cofiring, as they consist of sufficiently small particles. Consequently, wood pellets also have some limitations in terms of energy content and moisture uptake during storage and transportation. Torrefied biomass, because it is energy-dense and hydrophobic in nature, can be a good replacement for wood pellets in cofiring and gasification plants. The high fuel quality of torrefied biomass makes it very attractive for combustion and gasification applications. Due to high calorific values, the thermal energies of the combustion and gasification system can be improved significantly.³¹ However, data is lacking on milling, handling, storing, transporting, and combusting

Table 7. Indicative properties of different biomass and coal-based fuels ⁷²								
	WOOD	WOOD PELLETS	TORREFIED PELLETS	CHARCOAL	COAL			
Moisture content (% wt)	30-45	7–10	1–5	1–5	10–15			
Calorific value (MJ/kg)	9-12	15-16	20-24	30-32	23–28			
Volatiles (% db)	70-75	70-75	55-65	10-12	15-30			
Fixed carbon (% bd)	20-25	20-25	28-35	85-87	50-55			
Bulk density (kg/l)	0.2-0.25	0.55-0.75	0.75-0.85	~0.2	0.8-0.85			
Volumetric energy density (GJ/m ³)	2.0-3.0	7.5-10.4	15.0-18.7	6.0-6.4	18.4–23.8			
Dust	Average	Limited	Limited	High	Limited			
Hygroscopic properties	Hydrophilic	Hydrophilic	Hydrophobic	Hydrophobic	Hydrophobic			
Biological degradation	Yes	Yes	No	No	No			
Milling requirement	Special	Special	Classic	Classic	Classic			
Handling requirements	Special	Easy	Easy	Easy	Easy			
Product consistency	Limited	High	High	High	High			
Transport cost	High	Average	Low	Average	Low			

large amounts of torrefied biomass at a commercial scale. Common torrefied biomass applications include: (1) high-quality smokeless solid fuels for industrial, commercial, and domestic applications, (2) solid fuel for cofiring directly with pulverized coal at electric power plants, (3) an upgraded feedstock for fuel pellets, briquettes, and other densified biomass fuels, and (4) high-quality biomass solid fuel for advanced bioenergy application.

Conclusions

Interest in research on torrefaction of biomass materials is growing. Its potential to improve the quality of both herbaceous and woody materials provides a path for using these resources in many energy applications. This review has provided insight into the limitations of raw biomass materials to meet the needs of energy providers and has discussed options for improving biomass resources for use in power and liquid-fuel production. Based on this review, nine areas of discussion are summarized below. These areas provide a brief understanding of the potential use of torrefaction as a means of improving the physical, chemical, and rheological characteristics of biomass materials. As with most biomass-upgrading options, however, torrefaction, and the subsequent densification processes, need to be evaluated for energy inputs to understand the logistical advantages and end use of the product.

- 1. Torrefied biomass, in general, defines a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring at the 200–300°C temperature range.
- 2. The most common torrefaction reactions include (a) devolatilization and carbonization of hemicelluloses, and (b) depolymerization and devolatilization of lignin and cellulose.

- 3. Torrefaction of the biomass helps in developing a uniform feedstock with minimum variability in moisture content.
- 4. Torrefaction of biomass improves (a) energy density, grindability, and pelletability index ratings, (b) ultimate and proximate composition by increasing the carbon content and CV and decreasing the moisture and oxygen content, and (c) biochemical composition by decomposing the hemicelluloses and softening the lignin, which results in better binding during pelletization.
- 5. Ground torrefied biomass has improved sphericity, particle surface area, and particle size distribution.
- 6. Densification of torrefied material reduces specific energy consumption and increases throughput by about a factor of 2 compared to raw or untreated biomass.
- 7. During torrefaction the biomass loses most of the low energy content of the material, like (a) solids, which include original sugar structures and other newly formed polymeric structures, and (b) liquids, which include condensables, like water, organics, and lipids, and (c) gases, which include H₂, CO, CO₂ and CH₄, CxHy, toluene, and benzene.
- 8. Torrefaction preserves the biomass for a long time without biological degradation due to the chemical rearrangement reactions and formation of nonpolar unsaturated structures.
- 9. Torrefied biomass has been successfully used as an upgraded solid fuel in electric power plants and gasification plants.

Not all aspects of torrefaction and its influence on other processing operations have been explored. Opportunities for future research can include:

a. Optimizing torrefaction processes based on activation energies required to degrade the cellulose, hemicelluloses, and lignin.

- b. Understanding the torrefaction process at a molecular level by identifying different functional groups and energies associated with breaking the bonds.
- c. Understanding the spontaneous torrefaction process reactions using Fourier transform infrared (FTIR) and Raman spectroscopy.
- d. Understanding the severity of the torrefaction process based on color changes using the Hunter colorimeter.
- e. Studies on thermogravimetrics to establish the weight-loss kinetics.
- f. Studies on microstructural changes in biomass at different temperature regimes.
- g. Testing integrated processes such as torrefaction and densification.
- h. Calculating energies associated with condensable and noncondensable products produced during torrefaction and the ability to reuse them to improve the overall process efficiency.
- i. Understanding the storage behavior of torrefied biomass in terms of off-gassing and spontaneous combustion at different storage temperatures.

ACKNOWLEDGMENTS

The authors acknowledge Leslie Park Ovard for her valuable contribution to the manuscript, and Gordon Holt, Allen Haroldsen, Lisa Plaster, and Huan-Chen Tang, from Idaho National Laboratory's R&D Publications Support Team for their editorial and graphics creation assistance. This work is supported by the US Department of Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes.

US DEPARTMENT OF ENERGY DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the US government. Neither the US government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Any reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the US Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the US Government or any agency thereof.

REFERENCES

- Arias BR, Pevida CG, Fermoso JD, Plaza MG, Rubiera FG, and Pis-Martinez JJ. Influence of torrefaction on the grindability and reactivity of woody biomass. *Fuel Process Technol* 89(2), 169–175 (2008).
- United Nations (UN). Kyoto protocol to the United Nations framework convention on climate change [Online]. Available at: http://unfccc.int/resource/docs/ convkp/kpeng.pdf [August 3, 2011] (1998).
- Evergreen Renewables, LLC. Biomass torrefaction as a preprocessing step for thermal conversion: Reducing costs in the biomass supply chain [Online]. Available at: http://evergreenrenewable.com/welcome_files/Biomass%20torrefaction.pdf [August 3, 2011] (2009).
- 4. Pipatmanomai S. Overview and experiences of biomass fludized bed gasification in Thailand. J Sustainable Energy Environ Special Issue, 29-11 (2011).
- Sierra R, Smith A, Granda C, and Holtzapple MT. Producing fuels and chemicals from lignocellulosic biomass. *Chemical Engineering Process, Society of Biological Engineering Special Section: Biofuels* 104, S10–S18 [Online]. Available at: http://www.aiche.org/uploadedFiles/SBE/MemberCenter/0808S10(2).pdf [August 3, 2011] (2008).
- Uslu A, Faaij A, and Bergman PCA. Pre-treatment technologies, and their effect on international bioenergy supply chain logistics: Techno-economic evaluation of torrefaction, fast pyrolysis, and pelletisation. *Energy* 33(8), 1206–1223 (2008).
- Zanzi R, Ferro DT, Torres A, Soler PB, and Bjornbom E. Biomass torrefaction. In: The 6th Asia-Pacific International Symposium on Combustion and Energy Utilization. Kuala Lumpur, Malaysia, 20–22 May 2002 (2002).
- Bourgeois JP and Doat J. Torrefied wood from temperate and tropical species: Advantages and prospects. In: *Bioenergy 84*, 3, 153–159. Egneus H, Ellegard A, Okeefe P, and Kristofferson L (eds), Elsevier Applied Science, London, United Kingdom. (1984).
- 9. Lipinsky ES, Arcate JR, and Reed TB. Enhanced wood fuels via torrefaction. *Fuel Chemistry Division Preprints*, 47(1), 408–410 (2002).
- Bergman PCA, Boersma AR, Zwart RWH, and Kiel JHA. Torrefaction for biomass co-firing in existing coal-fired power stations. *Report ECN-C--05-013*, ECN, Petten (2005a).
- Bergman PCA, Boersma AR, Kiel JHA, Prins MJ, Ptasinski KJ, and Janssen FGGJ. Torrefied biomass for entrained-flow gasification of biomass. Report ECN-C--05-026, ECN, Petten (2005b).
- Bridgeman TG, Jones JM, Shield I, and Williams PT. Torrefaction of reed canary grass, wheat straw, and willow to enhance solid fuel qualities and combustion properties. *Fuel* 87(6), 844–856 (2008).
- Prins MJ, Ptasinski KJ, and Janssen FGGJ. Torrefaction of wood: Part 1, Weight loss kinetics. J Anal Appl Pyrolysis 77(1), 28–34 (2006a).
- Prins MJ, Ptasinski KJ, and Janssen FGGJ. Torrefaction of wood: Part 2, Analysis of products. J Anal Appl Pyrolysis 77(1), 35–40 (2006b).
- Sadaka S and Negi S. Improvements of biomass physical and thermochemical characteristics via torrefaction process. *Environmental Progress Sustainable Energy* 28(3), 427–434. doi: 10.1002/ep.10392 (2009).
- Moire L, Schmutz A, Buchala A, Yan B, Stark RE, and Ryser U. Glycerol is a suberin monomer: New experimental evidence for an old hypothesis. *Plant Physiol* 1999 March, 119(3), 1137–1146 (1999).
- 17. Esau K. Plant Anatomy, 2nd ed. John Wiley & Sons, New York, New York (1964).
- 18. Mohan D, Pittman CU, and Steele PH. Pyrolysis of wood/biomass for bio-oil: A critical review. *Energ Fuel* 20(3), 848–889 (2006).
- Shafizadeh F. Pyrolytic reactions and products of biomass. In: Fundamentals of Biomass Thermochemical Conversion. 183–217. Overend RP, Milne TA, and Mudge LK (eds), Elsevier Applied Science, London, United Kingdom (1985).
- 20. Williams PT and Besler S. The influence of temperature and heating rate on the slow pyrolysis of biomass. *Renewable Energy* 7(3), 233–250 (1996).

- Stamm AJ. Thermal degradation of wood and cellulose. Ind Eng Chem 48, 413–417 (1956).
- Esteves B, Marques AV, Domingos I, and Pereira H. Influence of steam heating on the properties of pine (*Pinus pinaster*) and eucalypt (*Eucalyptus globulus*) wood. Wood Sci Technol 41(3), 193–207 (2007).
- Borrega M and Kärenlampi PP. Effect of relative humidity on thermal degradation of Norway spruce (*Picea abies*) wood. J Wood Sci 54, 323–328 (2008).
- Sterling C. Effect of moisture and high temperature on cell walls in plant tissues. Food Res 20(5), 474–479 (1955).
- Kärenlampi, PP, Tynjala P, and Strom P. Phase transformation of wood cell wall water. J Wood Sci 51, 118–123 (2005).
- Björklund Jansson M. Two methods of extraction and GC-analysis of lipophilic wood extractives. Report #3, Nordic Standardization Program (NSP) (2008).
- Fernández de Simón B, García-Vallejo MC, Cadahía E, Arrabal C, and Cortijo M. Analysis of lipophilic compounds in needles of *Pinus pinea L Ann For Sci* 58, 449–454 (2001).
- GuiJun W, YongHao L, Jian D, JiangHong K, and YunLiang Z. Pretreatment of biomass by torrefaction. *Chin Sci Bull* 56(14), 1442–1448 (2011).
- Kojiro K, Miki T, Sugimoto H, and Kanayama K. Destabilization of wood microstructure caused by drying. Wood Material Science & Engineering 6(1–2), 69–74 doi:10.1080/17480272.2010.551545 (2011).
- Thuvander F, Kifetew G, and Berglund LA. Modeling of cell wall drying stresses in wood. Wood Sci Technol 36(3), 241–254 (2002).
- Bergman PCA and Kiel JHA. Torrefaction for biomass upgrading. In: Proceedings of the 14th European Biomass Conference & Exhibition. Paris, France, 17–21 October 2005.
- 32. Bergman PCA. Combined torrefaction and pelletization: The TOP process. *Report ECN-C-05-073, ECN*, Petten (2005).
- Lam PK, Sokhansanj S, Bi T, and Lim CJ. Quantifying color of steam treated pellets made from western Douglas Fir (*Pseudotsuga Menziesii, L.*). *Trans ASABE* (under review, 2011).
- Summa CA, de la Calle B, Brohee M, Stadler RH, and Anklam E. Impact of the roasting degree of coffee on the in vitro radical scavenging capacity and content of acrylamide. *LWT*, 40, 1849-1854 (2007).
- 35. Shafizadeh F and McGinnis GD. Chemical composition and thermal analysis of cottonwood. *Carbohyd Res* 16, 273–277 (1971).
- 36. Terziev N. Effect of high-temperature and microwave treatment on microstructure of softwoods. In: Proceedings of the 4th COST E15 Workshop: Methods for Improving Drying Quality of Wood. Santiago de Compostela, Spain, 30–31 May 2002.
- Borrega M and Kärenlampi PP. Cell wall porosity in Norway spruce wood as affected by high temperature drying. Wood Fiber Sci 43(2), 206–214 (2011).
- Borrega M and Kärenlampi PP. Three mechanisms affecting the mechanical properties of spruce wood dried at high temperatures. J Wood Sci 56, 87–94 (2010).
- Weise U, Maloney T, and Paulapuro H. Quantification of water in different states of interaction with wood pulp fiber. *Cellulose* 3, 189–202 (1996).
- Park S, Venditti RA, Jameel H, and Pawlak JJ. Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry. *Carbohyd Polym* 66(1), 97–103 (2006).
- 41. Van den Akker JA. Some theoretical considerations on the mechanical properties of fibrous structures. In: *Formation and Structure of Paper*. 205–241. F. Bolam (ed.) Transactions of the Fundamental Research Symposium, Oxford, United Kingdom, September 1961. Technical Section of the British Paper and Board's Makers Association, London, United Kingdom (1962).
- 42. Kifetew G, Thuvander F, Berglund L, and Lindberg H. The effect of drying on wood fracture surfaces from specimens loaded in wet condition. *Wood Sci Technol* 32(2), 83–94 (1998).
- 43. Thuvander F, Wallström L, Berglund LA, and Lindberg KAH. Effects of an impregnation procedure for prevention of wood cell wall damage due to dry-

ing. Wood Sci Technol 34(6), 473-480 (2000).

- 44. Kauman WG. Contribution to the theory of cell collapse in wood: investigations with eucalyptus regnans. *Maderas. Ciencia y tecnología* 4(1), 77–99 (2002).
- Tiemann HD. Eucalyptus lumber. (Abstr. Rep. For. Prod. Lab., Madison, Wisconsin) Hardwood Rec Sept. 25, Oct. 10, 1913.
- 46. Greenhill WL. Collapse and its removal: some recent investigations with eucalyptus regnans. *Coun Sci Industr Res (Aust.)* Pamph. 75 (1938).
- 47. Ellwood EL The seasoning of rotary peeled veneer from *Eucalyptus regnans* F.v.M. *Aust J Appl Sci* 3(1), 53–70 (1952).
- Ellwood EL, Gottstein, JW, and Kauman WG. A laboratory study of the vapour drying process: Part III. Vapour drying of timber in joinery and railway sleeper sizes. CSIRO (Aust.), Div. For. Prod. Technol. Paper No. 14 (1961).
- 49. Demirbas A. Pyrolysis mechanisms of biomass materials. *Energy Sources Part A* 31(13), 1186–1193. doi: 10.1080/15567030801952268 (2009).
- Bourgeois J and Guyonnet R. Characterization and analysis of torrefied wood. Wood Sci Technol 22(2), 143–155 (1988).
- Evans RJ, Milne TA, and Soltys MN. Direct mass-spectrometric studies of the pyrolysis of carbonaceous fuels: Part III. Primary pyrolysis of lignin. J Anal Appl Pyrol 9(3), 207–236 (1986).
- Deng J, Wang GJ, Kuang JH, Zhang YL, and Luo YH. Pretreatment of agricultural residues for co-gasification via torrefaction. J Anal Appl Pyrol 86(2), 331–337)2009).
- 53. Kiel JHA. ECN BO₂-technology for biomass upgrading. BUS final meeting. Wageningen, The Netherlands, 20 November 2007 (2007a).
- 54. Kiel JHA. Torrefaction for biomass upgrading into commodity fuels. In: Proceedings of the IEA Bioenergy Task 32 Workshop on Fuel Storage, Handling and Preparation and System Analysis for Biomass Combustion Technologies. Berlin, Germany, 7 May 2007 (2007b).
- 55. White RH and Dietenberger MA. Wood products: Thermal degradation and fire. In: *The Encyclopedia of Materials: Science and Technology*. Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, and Veyssière P (eds.), Elsevier Applied Science, Amsterdam, The Netherlands (2001).
- Oliveira-Rodrigues T and Rousset PLA. Effects of torrefaction on energy properties of eucalyptus grandis wood. *Cerne* 15(4), 446–452 (2009).
- 57. Phanphanich M and Sudhagar M. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. *Bioresource Technol* 102(22), 1246–1253 (2011).
- Repellin V, Govin A, Rolland M, and Guyonnet R. Energy requirement for fine grinding of torrefied wood. *Biomass Bioenerg* 34(7), 923–930 (2010).
- 59. Mani S, Tabil LG, and Sokhansanj S. Grinding performance and physical properties of wheat and barley straws, corn stover, and switchgrass. *Biomass Bioenergy* 27(4), 339–352 (2004).
- 60. Esteban LS and Carrasco JE. Evaluation of different strategies for pulverization of forest biomasses. *Powder Technol* 166(3), 139–151 (2006).
- Lehtikangas P. Quality properties of fuel pellets from forest biomass. Licentiate Thesis, Report #4. Department of Forest Management and Products, University of Agricultural Sciences. Uppsala, Sweden (1999).
- 62. Reed TB and Bryant B. Densified biomass: A new form of solid fuel. *Solar Energy Research Institute Report #SERI–35*, US Department of Energy, Division of Solar Technology, Golden, CO (1978).
- 63. Koukios EG. Progress in thermochemical, solid state refining of biofuels: From research to commercialization. *Advanced Thermochem Biomass Conversion*, 2, (1993).
- 64. Bridgeman TG, Darvell LI, Gudka B, Fisher EM, Jones JM, Waldron D, and Williams A. Milling and combustion properties of torrefied biomass: A potential co-firing fuel. *Workshop on Cofiring Biomass with Coal, Session 4: Torrefaction.* Drax Power Station, United Kingdom, 25–26 January 2011.
- Bourgeois J, Bartholin MC, and Guyonnet R. Thermal treatment of wood: analysis of the obtained product. Wood Sci Technol 23, 303–310 (1989).

- Prins MJ. Thermodynamic analysis of biomass gasification and torrefaction. Thesis submitted to Eindhoven. *Technische Universiteit Eindhoven* (2005).
- Kuang X, Tumuluru JS, Bi XT, Lim CJ, Sokhansanj S, and Melin S. Rate and peak concentrations of off-gas emissions in stored wood pellets – sensitivities to temperature, relative humidity, and headspace volume. *Ann Occup Hyg* 53(8), 789–796 (2009).
- Tumuluru JS, Kuang X, Sokhansanj S, Lim CJ, Bi X, and Melin S. Development of laboratory studies on the off-gassing of wood pellets. *Can Bio Eng* 52, 8.1–8.9 (2010).
- Pastorova I, Arisz PW, and Boon JJ. Preservation of D-glucose oligosaccharides in cellulose chars. Carbohyd Res 248, 151–165 (1993).
- Wooten JB, Crosby B, and Hajaligol MR. Evaluation of cellulose char structure monitored by 13C CP MAS NMR. *Fuel Chem Division Preprints* 46, 191–193 (2000).
- 71. Sokhansanj S, Peng J, Lim J, Bi X, Wang L, Lam P, Hoi J, Melin S, Tumuluru J, and Wright C. Optimum torrefaction and pelletization of biomass feedstock. *TCS 2010 Symposium on Thermal and Catalytic Sciences for Biofuels and Biobased Products*. Iowa State University, Ames, Iowa, 21–23 September 2010.
- Kleinschmidt CP. Overview of international developments on torrefaction. Central European Biomass Conference 2011, Graz, Austria, January 26–28, 2011 [Online]. Available at: http://www.bioenergytrade.org/downloads/grazkleinschmidtpaper2011.pdf [August 3, 2011] (2011).

This article has been cited by:

- 1. Luis Cutz, Urša Tiringer, Hamid Gilvari, Dingena Schott, Arjan Mol, Wiebren de Jong. 2021. Microstructural degradation during the storage of biomass pellets. *Communications Materials* 2:1. [Crossref]
- 2. Segun E. Ibitoye, Tien-Chien Jen, Rasheedat M. Mahamood, Esther T. Akinlabi. 2021. Densification of agro-residues for sustainable energy generation: an overview. *Bioresources and Bioprocessing* 8:1. . [Crossref]
- Anh Tuan Hoang, Hwai Chyuan Ong, I. M. Rizwanul Fattah, Cheng Tung Chong, Chin Kui Cheng, R. Sakthivel, Yong Sik Ok. 2021. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. *Fuel Processing Technology* 223, 106997. [Crossref]
- 4. Reine Karam, Frederic Becquart, Nor-Edine Abriak, Hicham Khouja. 2021. Vapothermal curing of hemp shives: Influence on some chemical and physical properties. *Industrial Crops and Products* **171**, 113870. [Crossref]
- 5. Chuanshuai Chen, Boyu Qu, Wenxiang Wang, Weijian Wang, Guozhao Ji, Aimin Li. 2021. Rice husk and rice straw torrefaction: Properties and pyrolysis kinetics of raw and torrefied biomass. *Environmental Technology & Innovation* 24, 101872. [Crossref]
- 6. Kabir Abogunde Abdulyekeen, Ahmad Abulfathi Umar, Muhamad Fazly Abdul Patah, Wan Mohd Ashri Wan Daud. 2021. Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass. *Renewable and Sustainable Energy Reviews* 150, 111436. [Crossref]
- 7. Kevin S. Kung, Sonal K. Thengane, Ahmed F. Ghoniem, C. Jim Lim, Shahabaddine Sokhansanj. 2021. Bulk permeability characteristics in a biomass moving bed and their effects on reactor design and scaling. *Chemical Engineering Journal* **420**, 129979. [Crossref]
- 8. Sahar Safarian, Runar Unnthorsson, Christiaan Richter. 2021. Bioethanol Production via Herbaceous and Agricultural Biomass Gasification Integrated with Syngas Fermentation. *Fermentation* 7:3, 139. [Crossref]
- Dengle Duan, Danhong Chen, Liyin Huang, Yongchuan Zhang, Yayun Zhang, Qin Wang, Gengsheng Xiao, Weili Zhang, Hanwu Lei, Roger Ruan. 2021. Activated carbon from lignocellulosic biomass as catalyst: A review of the applications in fast pyrolysis process. *Journal of Analytical and Applied Pyrolysis* 158, 105246. [Crossref]
- Florent Thevenon, Muriel Marchand, Maguelone Grateau, Hary Demey, André Chatroux, Philippe Pons de Vincent, Alain De Ryck, Thierry Melkior. 2021. Energy requirements to produce fine powders of raw and torrefied wood at pilot scale, and characterization of their flowability. *Biomass and Bioenergy* 152, 106196. [Crossref]
- 11. Jie Guo, Manoj Karkee, Zhou Yang, Han Fu, Jun Li, Yinlong Jiang, Tingting Jiang, Enxiu Liu, Jieli Duan. 2021. Discrete element modeling and physical experiment research on the biomechanical properties of banana bunch stalk for postharvest machine development. *Computers and Electronics in Agriculture* 188, 106308. [Crossref]
- 12. Joonyeong Kim. 2021. Characterization of Surface Properties and Hydrocarbon Adsorption of Torrefied Cardboard via Inverse Gas Chromatography and Complementary Analytical Techniques. *Chromatographia* **7**. [Crossref]
- 13. Michael Wild, Cristina Calderón. 2021. Torrefied Biomass and Where Is the Sector Currently Standing in Terms of Research, Technology Development, and Implementation. *Frontiers in Energy Research* 9. . [Crossref]
- 14. Henrik Haller, Gabriela Paladino, Gabriel Dupaul, Shiromini Gamage, Burdzhu Hadzhaoglu, Sara Norström, Alireza Eivazi, Svante Holm, Erik Hedenström, Anders Jonsson. 2021. Polluted lignocellulose-bearing sediments as a resource for marketable goods—a review of potential technologies for biochemical and thermochemical processing and remediation. *Clean Technologies* and Environmental Policy 3. [Crossref]
- 15. Ali Akbar, Umair Aslam, Anam Asghar, Zaheer Aslam. 2021. Effect of binding materials on physical and fuel characteristics of bagasse based pellets. *Biomass and Bioenergy* **150**, 106118. [Crossref]
- 16. Esteban Valdez, Lope G. Tabil, Edmund Mupondwa, Duncan Cree, Hadi Moazed. 2021. Microwave Torrefaction of Oat Hull: Effect of Temperature and Residence Time. *Energies* 14:14, 4298. [Crossref]
- 17. Stefania Lucantonio, Andrea Di Giuliano, Katia Gallucci. 2021. Influences of the Pretreatments of Residual Biomass on Gasification Processes: Experimental Devolatilizations Study in a Fluidized Bed. *Applied Sciences* 11:12, 5722. [Crossref]
- Wei-Hsin Chen, Chun Fong Eng, Yu-Ying Lin, Quang-Vu Bach, Veeramuthu Ashokkumar, Pau-Loke Show. 2021. Two-step thermodegradation kinetics of cellulose, hemicelluloses, and lignin under isothermal torrefaction analyzed by particle swarm optimization. *Energy Conversion and Management* 238, 114116. [Crossref]
- 19. Ying-Chu Chen, Li-Yun Chen. 2021. Pelleting spent coffee grounds by waste utensils as binders of biofuels. *Journal of Environmental Chemical Engineering* 9:3, 105006. [Crossref]

- Jingkun Han, Dunxi Yu, Jianqun Wu, Xin Yu, Fangqi Liu, Zihao Wang, Minghou Xu. 2021. Co-firing raw and torrefied rice husk with a high-Na/Ca/Cl coal: Impacts on fine particulates emission and elemental partitioning. *Fuel* 292, 120327. [Crossref]
- Anna Trubetskaya, Robert Johnson, Rory F.D. Monaghan, Andrezza S. Ramos, Anders Brunsvik, Bernd Wittgens, Yinglei Han, Italo Pisano, James J. Leahy, Vitaliy Budarin. 2021. Combined analytical strategies for chemical and physical characterization of tar from torrefaction of olive stone. *Fuel* 291, 120086. [Crossref]
- 22. Alina Rahayu Mohamed, Nur Izzati Ismail Fu, Noor Hasyierah Mohd Salleh, Razi Ahmad, Ras Izzati ismaii. 2021. Isothermal torrefaction of coconut fiber in a fixed bed reactor. *IOP Conference Series: Earth and Environmental Science* **765**:1, 012065. [Crossref]
- 23. Norbert Kienzl, Nikolaos Margaritis, Rafail Isemin, Victor Zaychenko, Christoph Strasser, Dimitrios-Sotirios Kourkoumpas, Panagiotis Grammelis, Dmitry Klimov, Olga Larina, George Sytchev, Aleksandr Mikhalev. 2021. Applicability of Torrefied Sunflower Husk Pellets in Small and Medium Scale Furnaces. Waste and Biomass Valorization 12:5, 2579-2596. [Crossref]
- 24. Neel Patel, Bishnu Acharya, Prabir Basu. 2021. Hydrothermal Carbonization (HTC) of Seaweed (Macroalgae) for Producing Hydrochar. *Energies* 14:7, 1805. [Crossref]
- 25. Teng-Chun Yang, Tung-Lin Wu, Chin-Hao Yeh. 2021. Water Resistance and Creep Behavior of Heat-Treated Moso Bamboo Determined by the Stepped Isostress Method. *Polymers* 13:8, 1264. [Crossref]
- 26. Yaseen Elkasabi, Charles A. Mullen. 2021. Progress on Biobased Industrial Carbons as Thermochemical Biorefinery Coproducts. *Energy & Fuels* 35:7, 5627-5642. [Crossref]
- 27. Tumpa R. Sarker, Sonil Nanda, Ajay K. Dalai, Venkatesh Meda. 2021. A Review of Torrefaction Technology for Upgrading Lignocellulosic Biomass to Solid Biofuels. *BioEnergy Research* 130. . [Crossref]
- Edgar A. Silveira, Sandra Luz, Kevin Candelier, Lucélia A. Macedo, Patrick Rousset. 2021. An assessment of biomass torrefaction severity indexes. *Fuel* 288, 119631. [Crossref]
- 29. Fang-Yu Hsu, Ke-Chang Hung, Jin-Wei Xu, Tung-Lin Wu, Jyh-Horng Wu. 2021. Physicomechanical properties and creep behavior of plywood composed of fully and partially heat-treated veneers. *Wood Science and Technology* 55:2, 445-460. [Crossref]
- 30. Bruno De Freitas Homem De Faria, Charline Lanvin, Jeremy Valette, Patrick Rousset, Angélica De Cássia Oliveira Carneiro, Armando Caldeira-Pires, Kévin Candelier. 2021. Effect of Leaching and Fungal Attacks During Storage on Chemical Properties of Raw and Torrefied Biomasses. Waste and Biomass Valorization 12:3, 1447-1463. [Crossref]
- 31. Teng-Chun Yang, Yu-Hsuan Yang, Chin-Hao Yeh. 2021. Thermal decomposition behavior of thin Makino bamboo (Phyllostachys makinoi) slivers under nitrogen atmosphere. *Materials Today Communications* 26, 102054. [Crossref]
- 32. Ji-Young Lee, Sung-Eun Lee, Dong-Woo Lee. 2021. Current status and future prospects of biological routes to bio-based products using raw materials, wastes, and residues as renewable resources. *Critical Reviews in Environmental Science and Technology* **3**, 1-57. [Crossref]
- Devendra Jain, Ravina, Ali Asger Bhojiya, Surya Chauhan, Deepak Rajpurohit, Santosh R. Mohanty. 2021. Polyphasic Characterization of Plant Growth Promoting Cellulose Degrading Bacteria Isolated from Organic Manures. *Current Microbiology* 78:2, 739-748. [Crossref]
- 34. Adekunle A. Adeleke, Jamiu K. Odusote, Peter P. Ikubanni, Olumuyiwa A. Lasode, Madhurai Malathi, Dayanand Paswan. 2021. Essential basics on biomass torrefaction, densification and utilization. *International Journal of Energy Research* 45:2, 1375-1395. [Crossref]
- 35. De Freitas Homem De Faria Bruno, Lanvin Charline, Valette Jeremy, Rousset Patrick, De Cassia Oliveira Carneiro Angélica, Caldeira-Pires Armando, Candelier Kévin. 2021. Emulation of field storage conditions for assessment of energy properties of torrefied sugarcane bagasses. *Biomass and Bioenergy* 145, 105938. [Crossref]
- 36. Yu Jiang, Chung-Hwan Jeon. 2021. Comparative Study on Combustion and Emission Characteristics of Torrefied and Ashless Biomass with Coal through the 500 MW Tangentially Fired Boiler Simulation. *Energy & Fuels* 35:1, 561-574. [Crossref]
- 37. Désiré Zinla, Prosper Gbaha, Paul Magloire E. Koffi, Blaise K. Koua. 2021. Characterization of rice, coffee and cocoa crops residues as fuel of thermal power plant in Côte d'Ivoire. *Fuel* **283**, 119250. [Crossref]
- 38. Wei-Hsin Chen, Bo-Jhih Lin, Yu-Ying Lin, Yen-Shih Chu, Aristotle T. Ubando, Pau Loke Show, Hwai Chyuan Ong, Jo-Shu Chang, Shih-Hsin Ho, Alvin B. Culaba, Anélie Pétrissans, Mathieu Pétrissans. 2021. Progress in biomass torrefaction: Principles, applications and challenges. *Progress in Energy and Combustion Science* 82, 100887. [Crossref]
- 39. Liu Xiaorui, Yuan Longji, Yang Xudong. 2021. Evolution of chemical functional groups during torrefaction of rice straw. *Bioresource Technology* **320**, 124328. [Crossref]

- 40. S.M. Gouws, M. Carrier, J.R. Bunt, H.W.J.P. Neomagus. 2021. Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation. *Renewable and Sustainable Energy Reviews* 135, 110189. [Crossref]
- 41. Leonel J. R. Nunes, João C. O. Matias, Liliana M. E. F. Loureiro, Letícia C. R. Sá, Hugo F. C. Silva, Abel M. Rodrigues, Thomas P. Causer, David B. DeVallance, Daniel E. Ciolkosz. 2021. Evaluation of the Potential of Agricultural Waste Recovery: Energy Densification as a Factor for Residual Biomass Logistics Optimization. *Applied Sciences* 11:1, 20. [Crossref]
- 42. María González Martínez, Estéban Hélias, Gilles Ratel, Sébastien Thiéry, Thierry Melkior. 2021. Torrefaction of Woody and Agricultural Biomass: Influence of the Presence of Water Vapor in the Gaseous Atmosphere. *Processes* **9**:1, 30. [Crossref]
- 43. Rabi K. Ahmad, Shaharin A. Sulaiman, Sharul Sham Dol, Hadiza A. Umar. The Potential of Coconut Shells Through Pyrolysis Technology in Nigeria 151-175. [Crossref]
- 44. Chia-Yang Chen, Wei-Hsin Chen, Chung-Hsien Hung. 2021. Combustion performance and emissions from torrefied and water washed biomass using a kg-scale burner. *Journal of Hazardous Materials* **402**, 123468. [Crossref]
- 45. Ying Wei Phuang, Wee Zheng Ng, Shun Shun Khaw, Yong Yin Yap, Suyin Gan, Lai Yee Lee, Suchithra Thangalazhy-Gopakumar. 2021. Wet torrefaction pre-treatment of yard waste to improve the fuel properties. *Materials Science for Energy Technologies* 4, 211-223. [Crossref]
- 46. Waliyu Adedeji Oyebode, Helen Olayinka Ogunsuyi. 2021. Impact of torrefaction process temperature on the energy content and chemical composition of stool tree (Alstonia congenisis Engl) woody biomass. Current Research in Green and Sustainable Chemistry 4, 100115. [Crossref]
- Maximilian Biermann, Rubén M. Montañés, Fredrik Normann, Filip Johnsson. 2020. Carbon Allocation in Multi-Product Steel Mills That Co-process Biogenic and Fossil Feedstocks and Adopt Carbon Capture Utilization and Storage Technologies. *Frontiers in Chemical Engineering* 2. [Crossref]
- Leonel J. R. Nunes, Jorge M. C. Ribeiro, Letícia C. R. Sá, Liliana M. E. F. Loureiro, Radu Godina, João C. O. Matias. 2020. Development of a Low-Cost Experimental Procedure for the Production of Laboratory Samples of Torrefied Biomass. *Clean Technologies* 2:4, 406-421. [Crossref]
- 49. Elias Kethobile, Clever Ketlogetswe, Jerekias Gandure. 2020. Characterisation of the non-oil Jatropha biomass material for use as a source of solid fuel. *Biomass Conversion and Biorefinery* **10**:4, 1251-1267. [Crossref]
- 50. Monika Aniszewska, Arkadiusz Gendek, Štěpán Hýsek, Jan Malaťák, Jan Velebil, Barbora Tamelová. 2020. Changes in the Composition and Surface Properties of Torrefied Conifer Cones. *Materials* 13:24, 5660. [Crossref]
- Temitope Olumide Olugbade, Oluwole Timothy Ojo. 2020. Biomass Torrefaction for the Production of High-Grade Solid Biofuels: a Review. *BioEnergy Research* 13:4, 999-1015. [Crossref]
- 52. Tadeusz Dziok, Ewa K. Kołodziejska, Elżbieta L. Kołodziejska. 2020. Mercury content in woody biomass and its removal in the torrefaction process. *Biomass and Bioenergy* 143, 105832. [Crossref]
- 53. Yu-Fong Huang, Shang-Lien Lo. 2020. Energy recovery from waste printed circuit boards using microwave pyrolysis: product characteristics, reaction kinetics, and benefits. *Environmental Science and Pollution Research* 27:34, 43274-43282. [Crossref]
- 54. José L. Torero, Jason I. Gerhard, Marcio F. Martins, Marco A.B. Zanoni, Tarek L. Rashwan, Joshua K. Brown. 2020. Processes defining smouldering combustion: Integrated review and synthesis. *Progress in Energy and Combustion Science* **81**, 100869. [Crossref]
- 55. Muhammad Shehzad, Anam Asghar, Naveed Ramzan, Umair Aslam, Mustapha Mohammed Bello. 2020. Impacts of nonoxidative torrefaction conditions on the fuel properties of indigenous biomass (bagasse). Waste Management & Research: The Journal for a Sustainable Circular Economy 38:11, 1284-1294. [Crossref]
- 56. Sonal K. Thengane, Kevin Kung, Robert York, Shahabaddine Sokhansanj, C. Jim Lim, Daniel L. Sanchez. 2020. Technoeconomic and emissions evaluation of mobile in-woods biochar production. *Energy Conversion and Management* 223, 113305. [Crossref]
- Dmitrijs Porsnovs, Linda Ansone-Bertina, Jorens Kviesis, Dace Ariņa, Maris Klavins. 2020. Biochar from Waste Derived Fuels as Low-Cost Adsorbent for Waste Hydrocarbons. *Environmental and Climate Technologies* 24:3, 174-187. [Crossref]
- Hua-Min Liu, Yong-Gang Yao, Yuan-Yuan Yan, Xue-De Wang. 2020. Elucidation of the structural changes of sesame hull hemicelluloses during roasting. *International Journal of Biological Macromolecules* 161, 1535-1544. [Crossref]
- 59. Przemysław Zaleski, Yash Chawla. 2020. Circular Economy in Poland: Profitability Analysis for Two Methods of Waste Processing in Small Municipalities. *Energies* 13:19, 5166. [Crossref]
- 60. Leonel J. R. Nunes. 2020. Torrefied Biomass as an Alternative in Coal-Fueled Power Plants: A Case Study on Grindability of Agroforestry Waste Forms. *Clean Technologies* **2**:3, 270-289. [Crossref]

- 61. Leonel J. R. Nunes, Liliana M. E. F. Loureiro, Letícia C. R. Sá, Hugo F. C. Silva. 2020. Waste Recovery through Thermochemical Conversion Technologies: A Case Study with Several Portuguese Agroforestry By-Products. *Clean Technologies* 2:3, 377-391. [Crossref]
- 62. Matt Klaas, Charles Greenhalf, Miloud Ouadi, Hessam Jahangiri, Andreas Hornung, Cedric Briens, Franco Berruti. 2020. The effect of torrefaction pre-treatment on the pyrolysis of corn cobs. *Results in Engineering* **7**, 100165. [Crossref]
- 63. A N Awang, A R Mohamed, N H Mohd Salleh. 2020. Torrefaction of Leucaena Leucocephala in a fixed-bed reactor. *IOP Conference Series: Materials Science and Engineering* **932**, 012002. [Crossref]
- 64. Maryam Akbari, Adetoyese Olajire Oyedun, Amit Kumar. 2020. Techno-economic assessment of wet and dry torrefaction of biomass feedstock. *Energy* 207, 118287. [Crossref]
- 65. Eloise Bevan, Jile Fu, Ying Zheng. 2020. Challenges and opportunities of hydrothermal carbonisation in the UK; case study in Chirnside. *RSC Advances* 10:52, 31586-31610. [Crossref]
- 66. Rishikesh Kumar Singh, Jyoti Prasad Chakraborty, Arnab Sarkar. 2020. Optimizing the torrefaction of pigeon pea stalk (cajanus cajan) using response surface methodology (RSM) and characterization of solid, liquid and gaseous products. *Renewable Energy* 155, 677-690. [Crossref]
- 67. Hongzhong Xiang, Zixing Feng, Jianfei Yang, Wanhe Hu, Fang Liang, Xiaomeng Yang, Tao Zhang, Bingbing Mi, Zhijia Liu. 2020. Investigating the co-firing characteristics of bamboo wastes and coal through cone calorimetry and thermogravimetric analysis coupled with Fourier transform infrared spectroscopy. Waste Management & Research 38:8, 896-902. [Crossref]
- 68. Oladapo T. Okareh, Alaba O. Gbadebo. Enhancement of Soil Health Using Biochar . [Crossref]
- 69. Peter Keliona Wani Likun, Huiyan Zhang, Rui Xiao. 2020. Online Vapors Separation of Torrefied-Bagasse/HDPE Co-pyrolysis into Three Grades of Bio-oils. *Energy & Fuels* 34:7, 8376-8394. [Crossref]
- Halina Pawlak-Kruczek, Mateusz Wnukowski, Lukasz Niedzwiecki, Mateusz Kowal, Krystian Krochmalny. 2020. Gasification of Torrefied Sewage Sludge With the Addition of Calcium Carbonate. *Journal of Energy Resources Technology* 142:7. . [Crossref]
- Asif Ali Siyal, Xiao Mao, Yang Liu, Chunmei Ran, Jie Fu, Qinhao Kang, Wenya Ao, Ruihong Zhang, Jianjun Dai, Guangqing Liu. 2020. Torrefaction subsequent to pelletization: Characterization and analysis of furfural residue and sawdust pellets. *Waste Management* 113, 210-224. [Crossref]
- 72. Fan Zhang, Zhen He, Ren Tu, Zhiwen Jia, Yujian Wu, Yan Sun, Enchen Jiang, Xiwei Xu. 2020. Influence of Ultrasonic/ Torrefaction Assisted Deep Eutectic Solvents on the Upgrading of Bio-Oil from Corn Stalk. ACS Sustainable Chemistry & Engineering 8:23, 8562-8576. [Crossref]
- 73. Kevin S. Kung, Sonal K. Thengane, Ahmed F. Ghoniem. 2020. Functional mapping of torrefied product characteristics with index of torrefaction. *Fuel Processing Technology* **202**, 106362. [Crossref]
- 74. Nikolaos Margaritis, Panagiotis Grammelis, Emmanouil Karampinis, Ioanna-Panagiota Kanaveli. 2020. Impact of Torrefaction on Vine Pruning's Fuel Characteristics. *Journal of Energy Engineering* 146:3, 04020006. [Crossref]
- 75. Hanqi Duan, Zhiqing Zhang, Md Maksudur Rahman, Xiaojuan Guo, Xingguang Zhang, Junmeng Cai. 2020. Insight into torrefaction of woody biomass: Kinetic modeling using pattern search method. *Energy* **201**, 117648. [Crossref]
- 76. Hao Luo, Lukasz Niedzwiecki, Amit Arora, Krzysztof Mościcki, Halina Pawlak-Kruczek, Krystian Krochmalny, Marcin Baranowski, Mayank Tiwari, Anshul Sharma, Tanuj Sharma, Zhimin Lu. 2020. Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier. *Energies* 13:11, 3018. [Crossref]
- 77. Yu Jiang, Kyeong-Hoon Park, Chung-Hwan Jeon. 2020. Feasibility Study of Co-Firing of Torrefied Empty Fruit Bunch and Coal through Boiler Simulation. *Energies* 13:12, 3051. [Crossref]
- 78. Flavia Lega Braghiroli, Leandro Passarini. 2020. Valorization of Biomass Residues from Forest Operations and Wood Manufacturing Presents a Wide Range of Sustainable and Innovative Possibilities. *Current Forestry Reports* 6:2, 172-183. [Crossref]
- 79. Sushant Negi, Gaurav Jaswal, Kali Dass, Koushik Mazumder, Sasikumar Elumalai, Joy K. Roy. 2020. Torrefaction: a sustainable method for transforming of agri-wastes to high energy density solids (biocoal). *Reviews in Environmental Science and Bio/ Technology* 19:2, 463-488. [Crossref]
- Luis Javier Gallego, Sandra Cardona, Edgar Martínez, Luis Alberto Rios. 2020. Valorization of Palm-Oil Residues: Integrated Production of a Good Quality Bio-coal and Electricity via Torrefaction. Waste and Biomass Valorization 11:5, 2273-2284. [Crossref]
- Witold M. Lewandowski, Michał Ryms, Wojciech Kosakowski. 2020. Thermal Biomass Conversion: A Review. Processes 8:5, 516. [Crossref]

- 82. Letícia C.R. Sá, Liliana M.E.F. Loureiro, Leonel J.R. Nunes, Adélio M.M. Mendes. 2020. Torrefaction as a pretreatment technology for chlorine elimination from biomass: A case study using Eucalyptus globulus Labill. *Resources* 9:5, 54. [Crossref]
- Rishikesh Kumar Singh, Arnab Sarkar, Jyoti Prasad Chakraborty. 2020. Effect of torrefaction on the physicochemical properties of eucalyptus derived biofuels: estimation of kinetic parameters and optimizing torrefaction using response surface methodology (RSM). *Energy* 198, 117369. [Crossref]
- 84. Meredith Barr, Kevin S. Kung, Sonal K. Thengane, Vidyut Mohan, Daniel Sweeney, Ahmed F. Ghoniem. 2020. Characterization of aggregate behaviors of torrefied biomass as a function of reaction severity. *Fuel* **266**, 117152. [Crossref]
- 85. Chungen Yin. 2020. Development in biomass preparation for suspension firing towards higher biomass shares and better boiler performance and fuel rangeability. *Energy* **196**, 117129. [Crossref]
- 86. Halina Pawlak-Kruczek, Amit Arora, Ashish Gupta, Muhammad Azam Saeed, Lukasz Niedzwiecki, Gordon Andrews, Herodotos Phylaktou, Bernard Gibbs, Anna Newlaczyl, Penelope M. Livesey. 2020. Biocoal - Quality control and assurance. *Biomass and Bioenergy* 135, 105509. [Crossref]
- 87. Leonel J.R. Nunes. 2020. A Case Study about Biomass Torrefaction on an Industrial Scale: Solutions to Problems Related to Self-Heating, Difficulties in Pelletizing, and Excessive Wear of Production Equipment. *Applied Sciences* 10:7, 2546. [Crossref]
- 88. Hwai Chyuan Ong, Wei-Hsin Chen, Yashvir Singh, Yong Yang Gan, Chia-Yang Chen, Pau Loke Show. 2020. A state-of-theart review on thermochemical conversion of biomass for biofuel production: A TG-FTIR approach. *Energy Conversion and Management* 209, 112634. [Crossref]
- Margareta Novian Cahyanti, Tharaka Rama Krishna C. Doddapaneni, Timo Kikas. 2020. Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements. *Bioresource Technology* 301, 122737. [Crossref]
- 90. John Pachón-Morales, Patrick Perré, Joel Casalinho, Huy Do, Dingena Schott, François Puel, Julien Colin. 2020. Potential of DEM for investigation of non-consolidated flow of cohesive and elongated biomass particles. *Advanced Powder Technology* 31:4, 1500-1515. [Crossref]
- 91. T.A. Mamvura, G. Danha. 2020. Biomass torrefaction as an emerging technology to aid in energy production. *Heliyon* 6:3, e03531. [Crossref]
- Thossaporn Onsree, Nakorn Tippayawong. 2020. Torrefaction of Maize Residue Pellets with Dry Flue Gas. *BioEnergy Research* 13:1, 358-368. [Crossref]
- Halina Pawlak-Kruczek, Amit Arora, Krzysztof Mościcki, Krystian Krochmalny, Shalvin Sharma, Lukasz Niedzwiecki. 2020. A transition of a domestic boiler from coal to biomass – Emissions from combustion of raw and torrefied Palm Kernel shells (PKS). *Fuel* 263, 116718. [Crossref]
- C. Mukherjee, J. Denney, E.G. Mbonimpa, J. Slagley, R. Bhowmik. 2020. A review on municipal solid waste-to-energy trends in the USA. *Renewable and Sustainable Energy Reviews* 119, 109512. [Crossref]
- 95. Oluwafemi Oyedeji, Philip Gitman, Jun Qu, Erin Webb. 2020. Understanding the Impact of Lignocellulosic Biomass Variability on the Size Reduction Process: A Review. ACS Sustainable Chemistry & Engineering 8:6, 2327-2343. [Crossref]
- 96. B. Grycova, A. Pryszcz, S. Krzack, M. Klinger, P. Lestinsky. 2020. Torrefaction of biomass pellets using the thermogravimetric analyser. *Biomass Conversion and Biorefinery* 111. [Crossref]
- Leonel J. R. Nunes, João C. O. Matias. 2020. Biomass Torrefaction as a Key Driver for the Sustainable Development and Decarbonization of Energy Production. *Sustainability* 12:3, 922. [Crossref]
- 98. Dimitrios K. Sidiras, Antonios G. Nazos, Georgios E. Giakoumakis, Dorothea V. Politi. 2020. Simulating the Effect of Torrefaction on the Heating Value of Barley Straw. *Energies* 13:3, 736. [Crossref]
- 99. Yuyang Fan, Nakorn Tippayawong, Guoqiang Wei, Zhen Huang, Kun Zhao, Liqun Jiang, Anqing Zheng, Zengli Zhao, Haibin Li. 2020. Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification. *Applied Energy* **260**, 114315. [Crossref]
- 100. Francese Bravo-Montero, David Castells-Rufas, Sven Alexander Vogler, Jordi Carrabina. Laser Inkless Eeo-Printing on Paper and Cardboard 59-64. [Crossref]
- 101. Henrique Real Guimarães, Katia Tannous. 2020. Influence of torrefaction on the pyrolysis of energy cane. *Journal of Thermal Analysis and Calorimetry* 139:3, 2221-2233. [Crossref]
- 102. Yong Tang, Zhibin Ye, Michel Jean. 2020. Influence of lignin accessibility on chemical and biological decomposition of lignin/ polyethylene composite thermoplastics. *The Canadian Journal of Chemical Engineering* **98**:1, 104-118. [Crossref]

- 103. Asmaa A. El-Tawil, Hesham M. Ahmed, Lena Sundqvist Ökvist, Bo Björkman. 2020. Self-Reduction Behavior of Bio-Coal Containing Iron Ore Composites. *Metals* **10**:1, 133. [Crossref]
- 104. Mohamed H. Mohamed, Inimfon A. Udoetok, Lee D. Wilson. 2020. Animal Biopolymer-Plant Biomass Composites: Synergism and Improved Sorption Efficiency. *Journal of Composites Science* 4:1, 15. [Crossref]
- 105. Premchand, Masaharu Komiyama, Aqsha Aqsha, Yoshimitsu Uemura. 2020. Effect of combustion and nitrogen gas atmospheres on the torrefaction performance of oil palm frond leaves and stems. *IOP Conference Series: Materials Science and Engineering* 736, 022020. [Crossref]
- 106. Anton P. Koskin, Inna V. Zibareva, Aleksey A. Vedyagin. Conversion of Rice Husk and Nutshells into Gaseous, Liquid, and Solid Biofuels 171-194. [Crossref]
- 107. Pradeep Kumar Budde, Jay Pandey. Studies on Biomass Torrefaction for Energy Densification of the Fuel 195-204. [Crossref]
- Enelio Torres-Garcia, Paola Brachi. 2020. Non-isothermal pyrolysis of grape marc. *Journal of Thermal Analysis and Calorimetry* 139:2, 1463-1478. [Crossref]
- 109. P. Debiagi, T. Faravelli, C. Hasse, E. Ranzi. Kinetic Modeling of Solid, Liquid and Gas Biofuel Formation from Biomass Pyrolysis 31-76. [Crossref]
- 110. Connor J. Cooper, Mohamed A. Abdelwahab, Amar K. Mohanty, Manjusri Misra. 2019. Hybrid Green Bionanocomposites of Bio-based Poly(butylene succinate) Reinforced with Pyrolyzed Perennial Grass Microparticles and Graphene Nanoplatelets. ACS Omega 4:24, 20476-20485. [Crossref]
- 111. P. J. García Nieto, E. García-Gonzalo, J. P. Paredes-Sánchez, A. Bernardo Sánchez, M. Menéndez Fernández. 2019. Predictive modelling of the higher heating value in biomass torrefaction for the energy treatment process using machine-learning techniques. *Neural Computing and Applications* **31**:12, 8823-8836. [Crossref]
- 112. Nitipong Soponpongpipat, Paisan Comsawang, Suwat Nanetoe. 2019. Quality Properties and Pyrolysis Characteristics of Cassava Rhizome Pellets Produced by Alternating between Pelletizing and Torrefaction. *Processes* **7**:12, 930. [Crossref]
- 113. Halina Pawlak-Kruczek, Michał Czerep, Michał Ostrycharczyk, Mateusz Wnukowski, Marcin Baranowski, Krystian Krochmalny, Lukasz Niedzwiecki, Mateusz Kowal. 2019. Sustainable utilization of the sewage sludge using combined drying, torrefaction and plasma gasification technologies. *Journal of Physics: Conference Series* **1398**, 012018. [Crossref]
- 114. Aznie Nadiera Awang, Alina Rahayu Mohamed, Noor Hasyierah Mohd Salleh, Peng Yong Hoo, Nur Nasulhah Kasim. 2019. Torrefaction of Leucaena Leucocephala under isothermal conditions using the Coats–Redfern method: kinetics and surface morphological analysis. *Reaction Kinetics, Mechanisms and Catalysis* 128:2, 663-680. [Crossref]
- 115. Duc Dung Nguyen, Chung-Hsuan Hsiao, Teng-Yu Su, Ping-Yen Hsieh, Yu-Ling Chen, Yu-Lun Chueh, Chi-Young Lee, Nyan-Hwa Tai. 2019. Bioinspired networks consisting of spongy carbon wrapped by graphene sheath for flexible transparent supercapacitors. *Communications Chemistry* **2**:1. [Crossref]
- 116. Bu Aamiri, Thilakaratne, Tumuluru, Satyavolu. 2019. An "In-Situ Binding" Approach to Produce Torrefied Biomass Briquettes. *Bioengineering* 6:4, 87. [Crossref]
- 117. P. Brachi, R. Chirone, M. Miccio, G. Ruoppolo. 2019. Fluidized bed torrefaction of biomass pellets: A comparison between oxidative and inert atmosphere. *Powder Technology* 357, 97-107. [Crossref]
- 118. Aristotle T. Ubando, Diana Rose T. Rivera, Wei-Hsin Chen, Alvin B. Culaba. 2019. A comprehensive review of life cycle assessment (LCA) of microalgal and lignocellulosic bioenergy products from thermochemical processes. *Bioresource Technology* 291, 121837. [Crossref]
- 119. Nasim Qadi, Makoto Kobayashi, Keiji Takeno. 2019. Influence of torrefaction after densification on the fuel characteristics and the inherited gasification kinetics of Erianthus arundinaceus energy grass. *Environmental Progress & Sustainable Energy* 38:6. . [Crossref]
- 120. Jyoti Rawat, Jyoti Saxena, Pankaj Sanwal. Biochar: A Sustainable Approach for Improving Plant Growth and Soil Properties . [Crossref]
- 121. A. Caliskan Sarikaya, H. Haykiri-Acma, S. Yaman. 2019. Effects of Pretreatment Outside of Torrefaction Range on Combustion Characteristics of Chars From Lignocellulosic Biomass. *Journal of Thermal Science and Engineering Applications* 11:5. [Crossref]
- 122. Mingman Sun, Yang Yang, Meng Zhang. 2019. A Temperature Model for Synchronized Ultrasonic Torrefaction and Pelleting of Biomass for Bioenergy Production. *Journal of Energy Resources Technology* 141:10. [Crossref]
- 123. Pedro Abelha, Carlos Mourão Vilela, Pavlina Nanou, Michiel Carbo, Arno Janssen, Simon Leiser. 2019. Combustion improvements of upgraded biomass by washing and torrefaction. *Fuel* 253, 1018-1033. [Crossref]

- 124. Melek Yılgın, Neslihan Duranay, Dursun Pehlivan. 2019. Torrefaction and combustion behaviour of beech wood pellets. *Journal of Thermal Analysis and Calorimetry* **138**:1, 819-826. [Crossref]
- 125. Yamin Hu, Shuang Wang, Qian Wang, Zhixia He, Abd El-Fatah Abomohra, Bin Cao. 2019. Influence of torrefaction pretreatment on the pyrolysis characteristics of seaweed biomass. *Cellulose* 26:15, 8475-8487. [Crossref]
- 126. Ismi Handayani, Iramona, Hanifah Widiastuti, Anggoro Tri Mursito. Combustion Kinetics of Coal and Raw Palm Kernel Shells Blend 1-6. [Crossref]
- 127. Xiaoqian Wang, Farid Sotoudehniakarani, Zhiming Yu, Jeffrey J. Morrell, Jed Cappellazzi, Armando G. McDonald. 2019. Evaluation of corrugated cardboard biochar as reinforcing fiber on properties, biodegradability and weatherability of woodplastic composites. *Polymer Degradation and Stability* **168**, 108955. [Crossref]
- 128. Paola Brachi, Riccardo Chirone, Francesco Miccio, Michele Miccio, Giovanna Ruoppolo. 2019. Valorization of Orange Peel Residues via Fluidized Bed Torrefaction: Comparison between Different Bed Materials. *Combustion Science and Technology* 191:9, 1585-1599. [Crossref]
- 129. Claudio Tregambi, Fabio Montagnaro, Piero Salatino, Roberto Solimene. 2019. Solar-Driven Torrefaction of a Lignin-Rich Biomass Residue in a Directly Irradiated Fluidized Bed Reactor. *Combustion Science and Technology* **191**:9, 1609-1627. [Crossref]
- 130. P.J. García Nieto, E. García–Gonzalo, F. Sánchez Lasheras, J.P. Paredes–Sánchez, P. Riesgo Fernández. 2019. Forecast of the higher heating value in biomass torrefaction by means of machine learning techniques. *Journal of Computational and Applied Mathematics* 357, 284-301. [Crossref]
- 131. Seung-Won Oh, Dae Hak Park, Soo Min Lee, Byoung Jun Ahn, Sye Hee Ahn, In Yang. 2019. Effect of Torrefaction Temperature on Lignin Distribution of Larix kaempferi C. and Liriodendron tulipifera L. Cubes and the Impact of Binder on Durability of Pellets Fabricated with the Torrefied Cubes. *Environmental Progress & Sustainable Energy* 38:5, 13190. [Crossref]
- 132. Brenda J. Alvarez-Chavez, Stéphane Godbout, Joahnn H. Palacios-Rios, Étienne Le Roux, Vijaya Raghavan. 2019. Physical, chemical, thermal and biological pre-treatment technologies in fast pyrolysis to maximize bio-oil quality: A critical review. *Biomass and Bioenergy* **128**, 105333. [Crossref]
- 133. Yan Sun, Zhen He, Ren Tu, Yu-jian Wu, En-chen Jiang, Xi-wei Xu. 2019. The mechanism of wet/dry torrefaction pretreatment on the pyrolysis performance of tobacco stalk. *Bioresource Technology* **286**, 121390. [Crossref]
- 134. Catarina Nobre, Octávio Alves, Andrei Longo, Cândida Vilarinho, Margarida Gonçalves. 2019. Torrefaction and carbonization of refuse derived fuel: Char characterization and evaluation of gaseous and liquid emissions. *Bioresource Technology* 285, 121325. [Crossref]
- 135. Thossaporn Onsree, Nakorn Tippayawong, Travis Williams, Katie McCullough, Elizabeth Barrow, Ravindra Pogaku, Jochen Lauterbach. 2019. Torrefaction of pelletized corn residues with wet flue gas. *Bioresource Technology* 285, 121330. [Crossref]
- 136. Rishikesh kumar Singh, Arnab Sarkar, Jyoti Prasad Chakraborty. 2019. Effect of torrefaction on the physicochemical properties of pigeon pea stalk (Cajanus cajan) and estimation of kinetic parameters. *Renewable Energy* **138**, 805-819. [Crossref]
- 137. Catarina Nobre, Cândida Vilarinho, Octávio Alves, Benilde Mendes, Margarida Gonçalves. 2019. Upgrading of refuse derived fuel through torrefaction and carbonization: Evaluation of RDF char fuel properties. *Energy* **181**, 66-76. [Crossref]
- 138. Kacper Świechowski, Marek Liszewski, Przemysław Bąbelewski, Jacek Koziel, Andrzej Białowiec. 2019. Oxytree Pruned Biomass Torrefaction: Mathematical Models of the Influence of Temperature and Residence Time on Fuel Properties Improvement. *Materials* 12:14, 2228. [Crossref]
- 139. Joo Yeob Lee, Sujeeta Karki, Jeeban Poudel, Keun Won Lee, Sea Cheon Oh. 2019. Fuel characteristics of sewage sludge using thermal treatment. *Journal of Material Cycles and Waste Management* 21:4, 766-773. [Crossref]
- 140. Nasim Qadi, Keiji Takeno, Alexander Mosqueda, Makoto Kobayashi, Yukihiro Motoyama, Kunio Yoshikawa. 2019. Effect of Hydrothermal Carbonization Conditions on the Physicochemical Properties and Gasification Reactivity of Energy Grass. *Energy* & Fuels. [Crossref]
- 141. Paweł Stępień, Małgorzata Serowik, Jacek A. Koziel, Andrzej Białowiec. 2019. Waste to Carbon Energy Demand Model and Data Based on the TGA and DSC Analysis of Individual MSW Components. *Data* 4:2, 53. [Crossref]
- 142. Kevin S. Kung, Santosh Shanbhogue, Alexander H. Slocum, Ahmed F. Ghoniem. 2019. A decentralized biomass torrefaction reactor concept. Part I: Multi-scale analysis and initial experimental validation. *Biomass and Bioenergy* 125, 196-203. [Crossref]
- 143. Juan F. Pérez, Manuel Raul Pelaez-Samaniego, Manuel Garcia-Perez. 2019. Torrefaction of Fast-Growing Colombian Wood Species. *Waste and Biomass Valorization* 10:6, 1655-1667. [Crossref]
- 144. Long T. Duong, Phuet Prasertcharoensuk, Anh N. Phan. Biofuel Production from Lignocellulosic Feedstock via Thermochemical Routes 89-166. [Crossref]

- 145. Jong-Ho Kim, Tae-Yong Jeong, Jianglong Yu, Chung-Hwan Jeon. 2019. Influence of biomass pretreatment on co-combustion characteristics with coal and biomass blends. *Journal of Mechanical Science and Technology* 33:5, 2493-2501. [Crossref]
- 146. Gabriel Talero, Sonia Rincón, Alexánder Gómez. 2019. Biomass torrefaction in a standard retort: A study on oil palm solid residues. *Fuel* 244, 366-378. [Crossref]
- 147. David Ifeanyi Uchezuba, Salomo Mbai, Ibo Zimmermann, Johan Bruwer. 2019. Investigating wood pellet torrefaction investment and its economic feasibility in the Krumhuk, Khomas region of Namibia. *SN Applied Sciences* 1:5. [Crossref]
- 148. Thuraiya Thaim, Ruwaida Abdul Rasid, Wan Muhamad Syafiq Wan Ismail. 2019. TORREFACTION OF OIL PALM FRONDS (OPF) AS A POTENTIAL FEEDSTOCK FOR ENERGY PRODUCTION PROCESSES. *Journal of Environmental Engineering and Landscape Management* 27:2, 64-71. [Crossref]
- 149. Gabriel Talero, Sonia Rincón, Alexánder Gómez. 2019. Torrefaction of oil palm residual biomass: Thermogravimetric characterization. *Fuel* 242, 496-506. [Crossref]
- 150. Dilpreet S. Bajwa, Sushil Adhikari, Jamileh Shojaeiarani, Sreekala G. Bajwa, Pankaj Pandey, Saravanan R. Shanmugam. 2019. Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer. *Construction and Building Materials* 204, 193-202. [Crossref]
- 151. Marvin Scherzinger, Tim Kulbeik, Ronja Grumbrecht, Daniel Christ, Martin Kaltschmitt. 2019. Wärmeinduzierte Vorbehandlung lignocellulosehaltiger Biomassen – Prozesse, Verfahren und deren Einordnung. Chemie Ingenieur Technik 91:4, 403-419. [Crossref]
- 152. Jaya Tumuluru. 2019. Pelleting of Pine and Switchgrass Blends: Effect of Process Variables and Blend Ratio on the Pellet Quality and Energy Consumption. *Energies* 12:7, 1198. [Crossref]
- 153. Duarte Magalhães, Aidin Panahi, Feyza Kazanç, Yiannis A. Levendis. 2019. Comparison of single particle combustion behaviours of raw and torrefied biomass with Turkish lignites. *Fuel* 241, 1085-1094. [Crossref]
- 154. María González Martínez, Capucine Dupont, Denilson da Silva Perez, Luis Míguez-Rodríguez, Maguelone Grateau, Sébastien Thiéry, Tarja Tamminen, Xuân-Mi Meyer, Christophe Gourdon. 2019. Assessing the suitability of recovering shrub biowaste involved in wildland fires in the South of Europe through torrefaction mobile units. *Journal of Environmental Management* 236, 551-560. [Crossref]
- 155. Jake K. Lindstrom, Alexander Shaw, Xiaolei Zhang, Robert C. Brown. Condensed Phase Reactions During Thermal Deconstruction 17-48. [Crossref]
- 156. Jacek Grams, Marzena Kwapińska, Marcin Jędrzejczyk, Izabela Rzeźnicka, James J. Leahy, Agnieszka M. Ruppert. 2019. Surface characterization of Miscanthus × giganteus and Willow subjected to torrefaction. *Journal of Analytical and Applied Pyrolysis* 138, 231-241. [Crossref]
- 157. L.Y. Vega, Liliana López, Carlos F. Valdés, F. Chejne. 2019. Assessment of energy potential of wood industry wastes through thermochemical conversions. *Waste Management* 87, 108-118. [Crossref]
- 158. Shoujie Ren, Hanwu Lei, Yayun Zhang, Lu Wang, Quan Bu, Yi Wei, Roger Ruan. 2019. Furfural production from microwave catalytic torrefaction of Douglas fir sawdust. *Journal of Analytical and Applied Pyrolysis* **138**, 188-195. [Crossref]
- 159. William Campbell, Amy Coller, Scott Noble, Richard Evitts, Kurt Woytiuk. 2019. Application of NIRS to the Direct Measurement of Carbonization in Torrefied Wheat Straw Chars. *Waste and Biomass Valorization* 47. . [Crossref]
- 160. Corinna Maria Grottola, Paola Giudicianni, Stefania Pindozzi, Fernando Stanzione, Salvatore Faugno, Massimo Fagnano, Nunzio Fiorentino, Raffaele Ragucci. 2019. Steam assisted slow pyrolysis of contaminated biomasses: Effect of plant parts and process temperature on heavy metals fate. Waste Management 85, 232-241. [Crossref]
- 161. Kwang Cheol Oh, Sun Young Park, Seok Jun Kim, Yun Sung Choi, Chung Geon Lee, La Hoon Cho, Dae Hyun Kim. 2019. Development and validation of mass reduction model to optimize torrefaction for agricultural byproduct biomass. *Renewable Energy*. [Crossref]
- 162. Edgar A. Silveira, Luiz Gustavo Oliveira Galvão, Isabella A. Sá, Bruno F. Silva, Lucélia Macedo, Patrick Rousset, Armando Caldeira-Pires. 2019. Effect of torrefaction on thermal behavior and fuel properties of Eucalyptus grandis macro-particulates. *Journal of Thermal Analysis and Calorimetry* 44. [Crossref]
- 163. Dipesh Kumar, Bhaskar Singh. 2019. Role of biomass supply chain management in sustainable bioenergy production. *Biofuels* 10:1, 109-119. [Crossref]
- 164. Marco Klemm, Ralf Schmersahl, Claudia Kirsten, Nadja Weller, Annett Pollex, Jan Hari Arti Khalsa, Thomas Zeng. Upgraded "New" Solid Biofuels 451-481. [Crossref]
- 165. Elias Christoforou, Paris A Fokaides. Solid Biomass Pretreatment Processes 25-56. [Crossref]

- 166. William A. Campbell, Kurt Woytiuk, Regan Gerspacher, Amy Coller, Richard W. Evitts. 2019. Char quality response surfaces from torrefaction of coppiced willow in a horizontal moving bed pilot plant. *The Canadian Journal of Chemical Engineering* 97:1, 84-92. [Crossref]
- 167. Jiajun Zhang, Xiaolei Zhang. The thermochemical conversion of biomass into biofuels 327-368. [Crossref]
- 168. Alper Hanoğlu, Ahmet Çay, Jale Yanık. 2019. Production of biochars from textile fibres through torrefaction and their characterisation. *Energy* 166, 664-673. [Crossref]
- 169. Halina Pawlak-Kruczek, Mateusz Wnukowski, Lukasz Niedzwiecki, Michał Czerep, Mateusz Kowal, Krystian Krochmalny, Jacek Zgóra, Michał Ostrycharczyk, Marcin Baranowski, Wilhelm Jan Tic, Joanna Guziałowska-Tic. 2019. Torrefaction as a Valorization Method Used Prior to the Gasification of Sewage Sludge. *Energies* 12:1, 175. [Crossref]
- 170. Andrea Salimbeni. Organic waste streams upgrading for gasification process optimization 75-103. [Crossref]
- 171. Pietro Bartocci, Øyvind Skreiberg, Liang Wang, Hu Song, Hai-Ping Yang, Mauro Zampilli, Gianni Bidini, Francesco Fantozzi. Mechanical Aspects and Applications of Pellets Prepared from Biomass Resources 325-358. [Crossref]
- 172. T. Phonlayut, N. Soykeabkeaw, U. Intatha, N. Tawichai. 2019. The Effect of Adding Torrefied Fraction to Biomass Pellet from Corn Stover: Physical Properties and Fuel Qualities. *Materials Today: Proceedings* 17, 1872-1879. [Crossref]
- 173. Jingkun Han, Dunxi Yu, Xin Yu, Fangqi Liu, Jianqun Wu, Xianpeng Zeng, Ge Yu, Minghou Xu. 2019. Effect of the torrefaction on the emission of PM10 from combustion of rice husk and its blends with a lignite. *Proceedings of the Combustion Institute* 37:3, 2733-2740. [Crossref]
- 174. Wei-Hsin Chen, Bo-Jhih Lin, Baptiste Colin, Jo-Shu Chang, Anélie Pétrissans, Xiaotao Bi, Mathieu Pétrissans. 2018. Hygroscopic transformation of woody biomass torrefaction for carbon storage. *Applied Energy* 231, 768-776. [Crossref]
- 175. H. Demey, T. Melkior, A. Chatroux, K. Attar, S. Thiery, H. Miller, M. Grateau, A.M. Sastre, M. Marchand. 2018. Evaluation of torrefied poplar-biomass as a low-cost sorbent for lead and terbium removal from aqueous solutions and energy co-generation. *Chemical Engineering Journal*. [Crossref]
- 176. Matthew D. Huff, Sarah Marshall, Haitham A. Saeed, James W. Lee. 2018. Surface oxygenation of biochar through ozonization for dramatically enhancing cation exchange capacity. *Bioresources and Bioprocessing* 5:1. . [Crossref]
- 177. Marcin Bajcar, Grzegorz Zaguła, Bogdan Saletnik, Maria Tarapatskyy, Czesław Puchalski. 2018. Relationship between Torrefaction Parameters and Physicochemical Properties of Torrefied Products Obtained from Selected Plant Biomass. *Energies* 11:11, 2919. [Crossref]
- 178. Teijo Palander, Hanna Haavikko, Kalle Kärhä. 2018. Towards sustainable wood procurement in forest industry The energy efficiency of larger and heavier vehicles in Finland. *Renewable and Sustainable Energy Reviews* **96**, 100-118. [Crossref]
- 179. C. M. Grottola, P. Giudicianni, J. B. Michel, R. Ragucci. 2018. Torrefaction of Woody Waste for Use as Biofuel. *Energy & Fuels* 32:10, 10266-10271. [Crossref]
- 180. Teng-Chun Yang, Tung-Ying Lee. 2018. Effects of density and heat treatment on the physico-mechanical properties of unidirectional round bamboo stick boards (UBSBs) made of Makino bamboo (Phyllostachys makinoi). *Construction and Building Materials* 187, 406-413. [Crossref]
- 181. Claire Mayer-Laigle, Rova Rajaonarivony, Nicolas Blanc, Xavier Rouau. 2018. Comminution of Dry Lignocellulosic Biomass: Part II. Technologies, Improvement of Milling Performances, and Security Issues. *Bioengineering* 5:3, 50. [Crossref]
- 182. Oscar Gómez-Cápiro, Adrian Hinkle, Aaron Delgado, Camila Fernández, Romel Jiménez, Luis Arteaga-Pérez. 2018. Carbon Aerogel-Supported Nickel and Iron for Gasification Gas Cleaning. Part I: Ammonia Adsorption. *Catalysts* 8:9, 347. [Crossref]
- 183. Aidin Panahi, Mahmut Tarakcioglu, Martin Schiemann, Michael Delichatsios, Yiannis A. Levendis. 2018. On the particle sizing of torrefied biomass for co-firing with pulverized coal. *Combustion and Flame* **194**, 72-84. [Crossref]
- 184. Mohamed Leila, Joann Whalen, Jeffrey Bergthorson. 2018. Strategic spatial and temporal design of renewable diesel and biojet fuel supply chains: Case study of California, USA. *Energy* 156, 181-195. [Crossref]
- 185. Yueh-Heng Li, Hsien-Tsung Lin, Kai-Lin Xiao, Janusz Lasek. 2018. Combustion behavior of coal pellets blended with Miscanthus biochar. *Energy*. [Crossref]
- 186. Jorge Ribeiro, Radu Godina, João Matias, Leonel Nunes. 2018. Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development. *Sustainability* **10**:7, 2323. [Crossref]
- 187. Bharat Regmi, Precious Arku, Syeda Humaira Tasnim, Shohel Mahmud, Animesh Dutta. 2018. Modelling of heat transfer during torrefaction of large lignocellulosic biomass. *Heat and Mass Transfer* 54:7, 1989-1997. [Crossref]
- 188. Cláudio M. Lousada, Nanta Sophonrat, Weihong Yang. 2018. Mechanisms of Formation of H, HO, and Water and of Water Desorption in the Early Stages of Cellulose Pyrolysis. *The Journal of Physical Chemistry C* 122:23, 12168-12176. [Crossref]

- 189. Pasi Karinkanta, Ari Ämmälä, Mirja Illikainen, Jouko Niinimäki. 2018. Fine grinding of wood Overview from wood breakage to applications. *Biomass and Bioenergy* 113, 31-44. [Crossref]
- 190. T.A. Mamvura, G. Pahla, E. Muzenda. 2018. Torrefaction of waste biomass for application in energy production in South Africa. South African Journal of Chemical Engineering 25, 1-12. [Crossref]
- 191. Luwei Li, Yuqian Huang, Dongyan Zhang, Anqing Zheng, Zengli Zhao, Mingzhu Xia, Haibin Li. 2018. Uncovering Structure– Reactivity Relationships in Pyrolysis and Gasification of Biomass with Varying Severity of Torrefaction. ACS Sustainable Chemistry & Engineering 6:5, 6008-6017. [Crossref]
- 192. Kehinde Oluoti, Tharaka Rama K.C. Doddapaneni, Tobias Richards. 2018. Investigating the kinetics and biofuel properties of Alstonia congensis and Ceiba pentandra via torrefaction. *Energy* **150**, 134-141. [Crossref]
- 193. Yongwoon Lee, Won Yang, Taeyoung Chae, Byeol Kang, Jinje Park, Changkook Ryu. 2018. Comparative Characterization of a Torrefied Wood Pellet under Steam and Nitrogen Atmospheres. *Energy & Fuels* **32**:4, 5109-5114. [Crossref]
- 194. Yousef Haseli. 2018. Process Modeling of a Biomass Torrefaction Plant. Energy & Fuels 32:4, 5611-5622. [Crossref]
- 195. P. Nanou, W.J.J. Huijgen, M.C. Carbo, J.H.A. Kiel. 2018. The role of lignin in the densification of torrefied wood in relation to the final product properties. *Biomass and Bioenergy* 111, 248-262. [Crossref]
- 196. Qiang Hu, Haiping Yang, Hanshen Xu, Zhiqiang Wu, C. Jim Lim, Xiaotao T. Bi, Hanping Chen. 2018. Thermal behavior and reaction kinetics analysis of pyrolysis and subsequent in-situ gasification of torrefied biomass pellets. *Energy Conversion and Management* 161, 205-214. [Crossref]
- 197. Alexandra Howell, Emily Beagle, Erica Belmont. 2018. Torrefaction of Healthy and Beetle Kill Pine and Co-Combustion With Sub-Bituminous Coal. *Journal of Energy Resources Technology* 140:4. . [Crossref]
- 198. Sujeeta Karki, Jeeban Poudel, Sea Oh. 2018. Thermal Pre-Treatment of Sewage Sludge in a Lab-Scale Fluidized Bed for Enhancing Its Solid Fuel Properties. *Applied Sciences* 8:2, 183. [Crossref]
- 199. Zumar M.A. Bundhoo. 2018. Microwave-assisted conversion of biomass and waste materials to biofuels. *Renewable and Sustainable Energy Reviews* 82, 1149-1177. [Crossref]
- 200. Seung-Won Oh, Dae Hak Park, Soo Min Lee, Byoung Jun Ahn, Sye Hee Ahn, In Yang. 2018. Torrefaction of Larix Kaempferi C. and Liriodendron Tulipifera L. Cubes: Impact of Reaction Temperature on Microscopic Structure, Moisture Absorptivity, and the Durability of Pellets Fabricated with the Cubes. *Energy & Fuels* 32:1, 431-440. [Crossref]
- 201. Daniela Thrän, Eric Billig, André Brosowski, Marco Klemm, Stefanie B. Seitz, Janet Witt. 2018. Bioenergy Carriers From Smoothly Treated Biomass towards Solid and Gaseous Biofuels. *Chemie Ingenieur Technik* 90:1-2, 68-84. [Crossref]
- 202. Szymon Szufa, Łukasz Adrian, Piotr Piersa, Zdzisława Romanowska-Duda, Mieczysław Grzesik, Artur Cebula, Sebastian Kowalczyk. Experimental Studies on Energy Crops Torrefaction Process Using Batch Reactor to Estimate Torrefaction Temperature and Residence Time 365-373. [Crossref]
- 203. . Bibliography 533-555. [Crossref]
- 204. Nami TAGAMI, Tomoe NAKADATE, Satoru MIZUNO, Tamio IDA. 2018. A Study for Torrefied Characteristics of Torrefied Green Tea Based on Index of the Coal. *Journal of the Japan Institute of Energy* 97:1, 1-7. [Crossref]
- 205. A. Rodrigues, L. Loureiro, L.J.R. Nunes. 2018. Torrefaction of woody biomasses from poplar SRC and Portuguese roundwood: Properties of torrefied products. *Biomass and Bioenergy* **108**, 55-65. [Crossref]
- 206. Paweł Stępień, Andrzej Białowiec. 2018. KINETIC PARAMETERS OF TORREFACTION PROCESS OF ALTERNATIVE FUEL PRODUCED FROM MUNICIPAL SOLID WASTE AND CHARACTERISTIC OF CARBONIZED REFUSE DERIVED FUEL. *Detritus* In Press:1, 1. [Crossref]
- 207. Leonel Jorge Ribeiro Nunes, João Carlos De Oliveira Matias, João Paulo Da Silva Catalão. Torrefied Biomass Safety Aspects 183-189. [Crossref]
- 208. Leonel Jorge Ribeiro Nunes, João Carlos De Oliveira Matias, João Paulo Da Silva Catalão. Future Developments and Derived Fuels 221-229. [Crossref]
- 209. Leonel Jorge Ribeiro Nunes, João Carlos De Oliveira Matias, João Paulo Da Silva Catalão. Biomass Torrefaction Process 89-124. [Crossref]
- 210. Leonel Jorge Ribeiro Nunes, João Carlos De Oliveira Matias, João Paulo Da Silva Catalão. Introduction 1-43. [Crossref]
- 211. Xiaohan Ren, Emad Rokni, Rui Sun, Xiaoxiao Meng, Yiannis A. Levendis. 2017. Evolution of Chlorine-Bearing Gases During Corn Straw Torrefaction at Different Temperatures. *Energy & Fuels* **31**:12, 13713-13723. [Crossref]
- 212. Anthony Anukam, Sampson Mamphweli, Omobola Okoh, Prashant Reddy. 2017. Influence of Torrefaction on the Conversion Efficiency of the Gasification Process of Sugarcane Bagasse. *Bioengineering* 4:4, 22. [Crossref]

- 213. Angelique T. Conag, Jaye Earl R. Villahermosa, Luis K. Cabatingan, Alchris Woo Go. 2017. Energy densification of sugarcane bagasse through torrefaction under minimized oxidative atmosphere. *Journal of Environmental Chemical Engineering* 5:6, 5411-5419. [Crossref]
- 214. Sujeeta Karki, Jeeban Poudel, Sea Cheon Oh. 2017. Utilizing Downdraft Fixed Bed Reactor for Thermal Upgrading of Sewage Sludge as Fuel by Torrefaction. *Applied Sciences* **7**:11, 1189. [Crossref]
- 215. D.A. Granados, R.A. Ruiz, L.Y. Vega, F. Chejne. 2017. Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process. *Energy* 139, 818-827. [Crossref]
- 216. Lihle D. Mafu, Hein W.J.P. Neomagus, Raymond C. Everson, Christien A. Strydom, Marion Carrier, Gregory N. Okolo, John R. Bunt. 2017. Chemical and structural characterization of char development during lignocellulosic biomass pyrolysis. *Bioresource Technology* 243, 941-948. [Crossref]
- 217. Ashish Manandhar, Ajay Shah. 2017. Life cycle assessment of feedstock supply systems for cellulosic biorefineries using corn stover transported in conventional bale and densified pellet formats. *Journal of Cleaner Production* **166**, 601-614. [Crossref]
- 218. P. Brachi, F. Miccio, G. Ruoppolo, M. Miccio. 2017. Pressurized Steam Torrefaction of Biomass: Focus on Solid, Liquid, and Gas Phase Distributions. *Industrial & Engineering Chemistry Research* 56:42, 12163-12173. [Crossref]
- 219. Kevin M. Van Geem, Ismaël Amghizar, Florence Vermeire, Ruben De Bruycker. Production of Bio-Oil 199-246. [Crossref]
- 220. Mohamad Azri Sukiran, Faisal Abnisa, Wan Mohd Ashri Wan Daud, Nasrin Abu Bakar, Soh Kheang Loh. 2017. A review of torrefaction of oil palm solid wastes for biofuel production. *Energy Conversion and Management* 149, 101-120. [Crossref]
- 221. Mar Edo, Nils Skoglund, Qiuju Gao, Per-Erik Persson, Stina Jansson. 2017. Fate of metals and emissions of organic pollutants from torrefaction of waste wood, MSW, and RDF. *Waste Management* **68**, 646-652. [Crossref]
- 222. Yu-Fong Huang, Pei-Hsin Cheng, Pei-Te Chiueh, Shang-Lien Lo. 2017. Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency. *Applied Energy* 204, 1018-1025. [Crossref]
- 223. B. Delgado, D. López González, S. Godbout, R. Lagacé, A. Giroir-Fendler, A. Avalos Ramirez. 2017. A study of torrefied cardboard characterization and applications: Composition, oxidation kinetics and methane adsorption. *Science of The Total Environment* 593-594, 406-417. [Crossref]
- 224. M. Grigiante, M. Brighenti, D. Antolini. 2017. Analysis of the impact of TG data sets on activation energy (E a). *Journal of Thermal Analysis and Calorimetry* 129:1, 553-565. [Crossref]
- 225. Michael Huang, Chia-Chi Chang, Min-Hao Yuan, Ching-Yuan Chang, Chao-Hsiung Wu, Je-Lueng Shie, Yen-Hau Chen, Yi-Hung Chen, Chungfang Ho, Wei-Ren Chang, Tzu-Yi Yang, Far-Ching Lin. 2017. Production of Torrefied Solid Bio-Fuel from Pulp Industry Waste. *Energies* 10:7, 910. [Crossref]
- 226. Xiaoyan Lv, Zhicheng Jiang, Jindong Li, Yue Wang, Dongmei Tong, Changwei Hu. 2017. Low-Temperature Torrefaction of Phyllostachys heterocycla cv. pubescens : Effect of Two Torrefaction Procedures on the Composition of Bio-Oil Obtained. ACS Sustainable Chemistry & Engineering 5:6, 4869-4878. [Crossref]
- 227. Olumide Winjobi, David R. Shonnard, Wen Zhou. 2017. Production of Hydrocarbon Fuel Using Two-Step Torrefaction and Fast Pyrolysis of Pine. Part 1: Techno-economic Analysis. ACS Sustainable Chemistry & Engineering 5:6, 4529-4540. [Crossref]
- 228. James G. Radney, Rian You, Michael R. Zachariah, Christopher D. Zangmeister. 2017. Direct In Situ Mass Specific Absorption Spectra of Biomass Burning Particles Generated from Smoldering Hard and Softwoods. *Environmental Science & Technology* 51:10, 5622-5629. [Crossref]
- 229. Yu-Fong Huang, Pei-Hsin Cheng, Pei-Te Chiueh, Shang-Lien Lo. 2017. Microwave Torrefaction of leucaena to Produce Biochar with High Fuel Ratio and Energy Return on Investment. *Energy Procedia* 105, 35-40. [Crossref]
- 230. Eliseo Ranzi, Paulo Eduardo Amaral Debiagi, Alessio Frassoldati. 2017. Mathematical Modeling of Fast Biomass Pyrolysis and Bio-Oil Formation. Note II: Secondary Gas-Phase Reactions and Bio-Oil Formation. ACS Sustainable Chemistry & Engineering 5:4, 2882-2896. [Crossref]
- 231. Teng-Chun Yang, Yi-Chi Chien, Tung-Lin Wu, Ke-Chang Hung, Jyh-Horng Wu. 2017. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time–Temperature Superposition Principle. *Materials* 10:4, 365. [Crossref]
- 232. David A. Agar. 2017. A comparative economic analysis of torrefied pellet production based on state-of-the-art pellets. *Biomass and Bioenergy* 97, 155-161. [Crossref]
- 233. Tharaka Rama Krishna C. Doddapaneni, Ramasamy Praveenkumar, Henrik Tolvanen, Marja R.T. Palmroth, Jukka Konttinen, Jukka Rintala. 2017. Anaerobic batch conversion of pine wood torrefaction condensate. *Bioresource Technology* 225, 299-307. [Crossref]

- 234. Jan H. Miedema, René M.J. Benders, Henri C. Moll, Frank Pierie. 2017. Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant. *Applied Energy* **187**, 873-885. [Crossref]
- 235. Linoj Kumar, Alexander A. Koukoulas, Sudhagar Mani, Jagannadh Satyavolu. 2017. Integrating Torrefaction in the Wood Pellet Industry: A Critical Review. *Energy & Fuels* 31:1, 37-54. [Crossref]
- 236. Yu-Fong Huang, Hsuan-Te Sung, Pei-Te Chiueh, Shang-Lien Lo. 2017. Microwave torrefaction of sewage sludge and leucaena. Journal of the Taiwan Institute of Chemical Engineers **70**, 236-243. [Crossref]
- 237. Zixu Yang, Ajay Kumar, Allen W. Apblett, Ahmed M. Moneeb. 2017. Co-Pyrolysis of torrefied biomass and methane over molybdenum modified bimetallic HZSM-5 catalyst for hydrocarbons production. *Green Chemistry* 19:3, 757-768. [Crossref]
- 238. Marco Klemm, Ralf Schmersahl, Claudia Kirsten, Nadja Weller, Annett Pollex, Jan Hari Arti Khalsa, Thomas Zeng. Biofuels: Upgraded New Solids 1-33. [Crossref]
- 239. Takahiro YOSHIDA, Yoshitaka KUBOJIMA, Daisuke KAMIKAWA, Mariko INOUE, Makoto KIGUCHI, Kojiro TANAKA, Yutaka MURATA, Megumi MASUI, Yoshifumi OHYABU, Takashi TSURU, Hironori IGARASHI, Akio KOBAYASHI, Takashi NOMURA. 2017. Preliminary Production Test of Torrefied Woody Biomass Fuel in a Small Scale Plant. *Journal of* the Japan Institute of Energy 96:8, 310. [Crossref]
- 240. Ricardo Correia, Margarida Gonçalves, Catarina Nobre, Benilde Mendes. 2017. Impact of torrefaction and low-temperature carbonization on the properties of biomass wastes from Arundo donax L. and Phoenix canariensis. *Bioresource Technology* 223, 210-218. [Crossref]
- 241. Yanyang Mei, Qingfeng Che, Qing Yang, Christopher Draper, Haiping Yang, Shihong Zhang, Hanping Chen. 2016. Torrefaction of different parts from a corn stalk and its effect on the characterization of products. *Industrial Crops and Products* 92, 26-33. [Crossref]
- 242. M. Grigiante, M. Brighenti, D. Antolini. 2016. A generalized activation energy equation for torrefaction of hardwood biomasses based on isoconversional methods. *Renewable Energy* **99**, 1318-1326. [Crossref]
- 243. Yu-Fong Huang, Hsuan-Te Sung, Pei-Te Chiueh, Shang-Lien Lo. 2016. Co-torrefaction of sewage sludge and leucaena by using microwave heating. *Energy* **116**, 1-7. [Crossref]
- 244. K. Malak, C. de la Seiglière, C. Fernández, M. Swaminathan, A. Sebastián, D. Arora. 2016. Green Coal: A New Energy Source from Leaves. *Energy Procedia* 100, 484-491. [Crossref]
- 245. Lopes e Oliveira Rafael, Beatriz Atanasio Borba Camila, Duvoisin Junior Sergio, Melchionna Albuquerque Patricia, Buarque de Gusmao Norma, Vaz de Andrade Edmar, Alves de Oliveira da Silva Leonor. 2016. Production and characterization of endoglucanase secreted by Streptomyces capoamus isolated from Caatinga. *African Journal of Biotechnology* 15:42, 2394-2401. [Crossref]
- 246. Jan Khalsa, Diana Leistner, Nadja Weller, Leilani Darvell, Ben Dooley. 2016. Torrefied Biomass Pellets—Comparing Grindability in Different Laboratory Mills. *Energies* 9:10, 794. [Crossref]
- 247. . Gasification 203-258. [Crossref]
- 248. Olumide Winjobi, David R Shonnard, Ezra Bar-Ziv, Wen Zhou. 2016. Life cycle greenhouse gas emissions of bio-oil from two-step torrefaction and fast pyrolysis of pine. *Biofuels, Bioproducts and Biorefining* 10:5, 576-588. [Crossref]
- 249. Mehmood Ali, Ian A. Watson. 2016. Torrefaction and Process Energy Budget Analysis of Powdered, De-oiled, and In Situ Transesterified Flaxseed Cakes for Energy Generation. *Energy Technology* 4:8, 980-989. [Crossref]
- 250. Tansy Wigley, Alex C.K. Yip, Shusheng Pang. 2016. Pretreating biomass via demineralisation and torrefaction to improve the quality of crude pyrolysis oil. *Energy* **109**, 481-494. [Crossref]
- 251. Anne K. Starace, Robert J. Evans, David D. Lee, Daniel L. Carpenter. 2016. Effects of Torrefaction Temperature on Pyrolysis Vapor Products of Woody and Herbaceous Feedstocks. *Energy & Fuels* **30**:7, 5677-5683. [Crossref]
- 252. S. Vakalis, R. Heimann, A. Talley, N. Heimann, M. Baratieri. 2016. Introduction to frictional pyrolysis (FP) An alternative method for converting biomass to solid carbonaceous products. *Fuel* **175**, 49-56. [Crossref]
- 253. Bimal Acharya, Animesh Dutta. 2016. Fuel property enhancement of lignocellulosic and nonlignocellulosic biomass through torrefaction. *Biomass Conversion and Biorefinery* 6:2, 139-149. [Crossref]
- 254. Pavlina Nanou, Michiel C. Carbo, Jaap H.A. Kiel. 2016. Detailed mapping of the mass and energy balance of a continuous biomass torrefaction plant. *Biomass and Bioenergy* 89, 67-77. [Crossref]
- 255. Daniela Thrän, Janet Witt, Kay Schaubach, Jaap Kiel, Michiel Carbo, Jörg Maier, Collins Ndibe, Jaap Koppejan, Eija Alakangas, Stefan Majer, Fabian Schipfer. 2016. Moving torrefaction towards market introduction – Technical improvements

and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project. *Biomass and Bioenergy* **89**, 184-200. [Crossref]

- 256. Jaya Tumuluru. 2016. Effect of Deep Drying and Torrefaction Temperature on Proximate, Ultimate Composition, and Heating Value of 2-mm Lodgepole Pine (Pinus contorta) Grind. *Bioengineering* **3**:2, 16. [Crossref]
- 257. N. Cerone, F. Zimbardi, A. Villone, N. Strjiugas, E. G. Kiyikci. 2016. Gasification of Wood and Torrefied Wood with Air, Oxygen, and Steam in a Fixed-Bed Pilot Plant. *Energy & Fuels* **30**:5, 4034-4043. [Crossref]
- 258. Andrés Anca-Couce, Thomas Brunner, Werner Kanzian, Ingwald Obernberger, Klaus Trattner. 2016. Characterization and condensation behaviour of gravimetric tars produced during spruce torrefaction. *Journal of Analytical and Applied Pyrolysis* 119, 173-179. [Crossref]
- 259. Elias A. Christoforou, Paris A. Fokaides. 2016. Life cycle assessment (LCA) of olive husk torrefaction. *Renewable Energy* 90, 257-266. [Crossref]
- 260. Yu-Fong Huang, Pei-Te Chiueh, Shang-Lien Lo. 2016. A review on microwave pyrolysis of lignocellulosic biomass. Sustainable Environment Research 26:3, 103-109. [Crossref]
- 261. Andrew N. Rollinson, Orla Williams. 2016. Experiments on torrefied wood pellet: study by gasification and characterization for waste biomass to energy applications. *Royal Society Open Science* **3**:5, 150578. [Crossref]
- 262. F. Yazdanpanah, S. Sokhansanj, C. J. Lim, A. Lau, X. Bi. 2016. Gas Adsorption Capacity of Wood Pellets. Energy & Fuels 30:4, 2975-2981. [Crossref]
- 263. C. Luke Williams, Tyler L. Westover, Rachel M. Emerson, Jaya Shankar Tumuluru, Chenlin Li. 2016. Sources of Biomass Feedstock Variability and the Potential Impact on Biofuels Production. *BioEnergy Research* 9:1, 1-14. [Crossref]
- 264. Andrés Anca-Couce. 2016. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. *Progress in Energy and Combustion Science* 53, 41-79. [Crossref]
- 265. Andrés Anca-Couce, Ingwald Obernberger. 2016. Application of a detailed biomass pyrolysis kinetic scheme to hardwood and softwood torrefaction. *Fuel* 167, 158-167. [Crossref]
- 266. Olumide Winjobi, David R. Shonnard, Ezra Bar-Ziv, Wen Zhou. 2016. Techno-economic assessment of the effect of torrefaction on fast pyrolysis of pine. *Biofuels, Bioproducts and Biorefining* **10**:2, 117-128. [Crossref]
- 267. Lihle D. Mafu, Hein W.J.P. Neomagus, Raymond C. Everson, Marion Carrier, Christien A. Strydom, John R. Bunt. 2016. Structural and chemical modifications of typical South African biomasses during torrefaction. *Bioresource Technology* 202, 192-197. [Crossref]
- 268. M. Detcheberry, P. Destrac, S. Massebeuf, O. Baudouin, V. Gerbaud, J.-S. Condoret, X.-M. Meyer. 2016. Thermodynamic modeling of the condensable fraction of a gaseous effluent from lignocellulosic biomass torrefaction. *Fluid Phase Equilibria* 409, 242-255. [Crossref]
- 269. M.S. Roni, K.G. Cafferty, J.R. Hess, J.J. Jacobson, K.L. Kenney, E. Searcy, J.S. Tumuluru. Lignocellulosic crop supply chains (eg, Miscanthus, switchgrass, reed canary grass, rye, giant reed, etc.) 271-291. [Crossref]
- 270. E. Ranzi, T. Faravelli, F. Manenti. Pyrolysis, Gasification, and Combustion of Solid Fuels 1-94. [Crossref]
- 271. Ke Zhang, Loretta Johnson, P.V. Vara Prasad, Zhijian Pei, Donghai Wang. 2015. Big bluestem as a bioenergy crop: A review. *Renewable and Sustainable Energy Reviews* **52**, 740-756. [Crossref]
- 272. Bimal Acharya, Animesh Dutta, Jamie Minaret. 2015. Review on comparative study of dry and wet torrefaction. Sustainable Energy Technologies and Assessments 12, 26-37. [Crossref]
- 273. Jaya Shankar Tumuluru. 2015. Comparison of Chemical Composition and Energy Property of Torrefied Switchgrass and Corn Stover. *Frontiers in Energy Research* **3**. . [Crossref]
- 274. Hyungseok Nam, Sergio Capareda. 2015. Experimental investigation of torrefaction of two agricultural wastes of different composition using RSM (response surface methodology). *Energy* **91**, 507-516. [Crossref]
- 275. Kim Lê Thành, Jean-Michel Commandré, Jérémy Valette, Ghislaine Volle, Michel Meyer. 2015. Detailed identification and quantification of the condensable species released during torrefaction of lignocellulosic biomasses. *Fuel Processing Technology* 139, 226-235. [Crossref]
- 276. Diego Javier Jiménez, Diego Chaves-Moreno, Jan Dirk van Elsas. 2015. Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw. *Scientific Reports* **5**:1. . [Crossref]
- 277. Yash Joshi, Manuela Di Marcello, Easwaran Krishnamurthy, Wiebren de Jong. 2015. Packed-Bed Torrefaction of Bagasse under Inert and Oxygenated Atmospheres. *Energy & Fuels* 29:8, 5078-5087. [Crossref]

- 278. Yu-Fong Huang, Chun-Hao Shih, Pei-Te Chiueh, Shang-Lien Lo. 2015. Microwave co-pyrolysis of sewage sludge and rice straw. *Energy* 87, 638-644. [Crossref]
- 279. Alexander Stroh, Falah Alobaid, Jan-Peter Busch, Jochen Ströhle, Bernd Epple. 2015. 3-D numerical simulation for co-firing of torrefied biomass in a pulverized-fired 1 MWth combustion chamber. *Energy* **85**, 105-116. [Crossref]
- 280. Tansy Wigley, Alex C.K. Yip, Shusheng Pang. 2015. The use of demineralisation and torrefaction to improve the properties of biomass intended as a feedstock for fast pyrolysis. *Journal of Analytical and Applied Pyrolysis* 113, 296-306. [Crossref]
- 281. Harpreet Singh Kambo, Animesh Dutta. 2015. A comparative review of biochar and hydrochar in terms of production, physicochemical properties and applications. *Renewable and Sustainable Energy Reviews* 45, 359-378. [Crossref]
- 282. . Rankine Cycle Systems 230-263. [Crossref]
- 283. G. Toscano, D. Duca, G. Rossini, C. Mengarelli, A. Pizzi. 2015. Identification of different woody biomass for energy purpose by means of Soft Independent Modeling of Class Analogy applied to thermogravimetric analysis. *Energy* 83, 351-357. [Crossref]
- 284. Shi-Shen Liaw, Craig Frear, Wayne Lei, Shuai Zhang, Manuel Garcia-Perez. 2015. Anaerobic digestion of C1-C4 light oxygenated organic compounds derived from the torrefaction of lignocellulosic materials. *Fuel Processing Technology* 131, 150-158. [Crossref]
- 285. Jaya Tumuluru, C. Lim, Xiaotao Bi, Xingya Kuang, Staffan Melin, Fahimeh Yazdanpanah, Shahab Sokhansanj. 2015. Analysis on Storage Off-Gas Emissions from Woody, Herbaceous, and Torrefied Biomass. *Energies* 8:3, 1745-1759. [Crossref]
- 286. Paola Brachi, Francesco Miccio, Michele Miccio, Giovanna Ruoppolo. 2015. Isoconversional kinetic analysis of olive pomace decomposition under torrefaction operating conditions. *Fuel Processing Technology* **130**, 147-154. [Crossref]
- 287. Jordan Klinger, Ezra Bar-Ziv, David Shonnard. 2015. Predicting Properties of Torrefied Biomass by Intrinsic Kinetics. *Energy* & Fuels 29:1, 171-176. [Crossref]
- 288. Rupam Kataki, Rahul S. Chutia, Mridusmita Mishra, Neonjyoti Bordoloi, Ruprekha Saikia, Thallada Bhaskar. Feedstock Suitability for Thermochemical Processes 31-74. [Crossref]
- P.W.R. Adams, J.E.J. Shirley, M.C. McManus. 2015. Comparative cradle-to-gate life cycle assessment of wood pellet production with torrefaction. *Applied Energy* 138, 367-380. [Crossref]
- 290. Eric Billig, Janet Witt, Marco Klemm, Claudia Kirsten, Jan Khalsa, Daniela Thrän. Intermediate Biofuels to Support a Flexible Application of Biomass 121-140. [Crossref]
- 291. Zixu Yang, Madhura Sarkar, Ajay Kumar, Jaya Shankar Tumuluru, Raymond L. Huhnke. 2014. Effects of torrefaction and densification on switchgrass pyrolysis products. *Bioresource Technology* 174, 266-273. [Crossref]
- 292. Dan Nicksy, Andrew Pollard, David Strong, Jason Hendry. 2014. In-situ torrefaction and spherical pelletization of partially pre-torrefied hybrid poplar. *Biomass and Bioenergy* **70**, 452-460. [Crossref]
- 293. Jordan Klinger, Bethany Klemetsrud, Ezra Bar-Ziv, David Shonnard. 2014. Temperature dependence of aspen torrefaction kinetics. *Journal of Analytical and Applied Pyrolysis* 110, 424-429. [Crossref]
- 294. Nicolas Doassans-Carrère, Sébastien Muller, Martin Mitzkat. 2014. REVE a new industrial technology for biomass torrefaction: pilot studies. *Fuel Processing Technology* 126, 155-162. [Crossref]
- 295. C. Branca, C. Di Blasi, A. Galgano, M. Broström. 2014. Effects of the Torrefaction Conditions on the Fixed-Bed Pyrolysis of Norway Spruce. *Energy & Fuels* 28:9, 5882-5891. [Crossref]
- 296. Manuel Raul Pelaez-Samaniego, Vikram Yadama, Manuel Garcia-Perez, Eini Lowell, Armando G. McDonald. 2014. Effect of temperature during wood torrefaction on the formation of lignin liquid intermediates. *Journal of Analytical and Applied Pyrolysis* 109, 222-233. [Crossref]
- 297. Madhura Sarkar, Ajay Kumar, Jaya Shankar Tumuluru, Krushna N. Patil, Danielle D. Bellmer. 2014. Gasification performance of switchgrass pretreated with torrefaction and densification. *Applied Energy* **127**, 194-201. [Crossref]
- 298. Jun Li, Xiaolei Zhang, Halina Pawlak-Kruczek, Weihong Yang, Pawel Kruczek, Wlodzimierz Blasiak. 2014. Process simulation of co-firing torrefied biomass in a 220MWe coal-fired power plant. *Energy Conversion and Management* 84, 503-511. [Crossref]
- 299. Shoujie Ren, Hanwu Lei, Lu Wang, Gayatri Yadavalli, Yupeng Liu, James Julson. 2014. The integrated process of microwave torrefaction and pyrolysis of corn stover for biofuel production. *Journal of Analytical and Applied Pyrolysis* 108, 248-253. [Crossref]
- 300. Nalladurai Kaliyan, R. Vance Morey, Douglas G. Tiffany, Won F. Lee. 2014. Life cycle assessment of a corn stover torrefaction plant integrated with a corn ethanol plant and a coal fired power plant. *Biomass and Bioenergy* 63, 92-100. [Crossref]
- 301. Jun Li, Giorgio Bonvicini, Leonardo Tognotti, Weihong Yang, Wlodzimierz Blasiak. 2014. High-temperature rapid devolatilization of biomasses with varying degrees of torrefaction. *Fuel* **122**, 261-269. [Crossref]

- 302. Ke Zhang, Loretta Johnson, Richard Nelson, Wenqiao Yuan, Zhijian Pei, Xiuzhi S. Sun, Donghai Wang. 2014. Thermal properties of big bluestem as affected by ecotype and planting location along the precipitation gradient of the Great Plains. *Energy* **64**, 164-171. [Crossref]
- 303. Daniel Carpenter, Tyler L. Westover, Stefan Czernik, Whitney Jablonski. 2014. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis biooils and vapors. *Green Chem.* 16:2, 384-406. [Crossref]
- 304. Erin Searcy, J. Richard Hess, JayaShankar Tumuluru, Leslie Ovard, David J. Muth, Erik Trømborg, Michael Wild, Michael Deutmeyer, Lars Nikolaisen, Tapio Ranta, Ric Hoefnagels. Optimization of Biomass Transport and Logistics 103-123. [Crossref]
- 305. Jillian L. Goldfarb, Chao Liu. 2013. Impact of blend ratio on the co-firing of a commercial torrefied biomass and coal via analysis of oxidation kinetics. *Bioresource Technology* 149, 208-215. [Crossref]
- 306. Manuel Raul Pelaez-Samaniego, Vikram Yadama, Eini Lowell, Raul Espinoza-Herrera. 2013. A review of wood thermal pretreatments to improve wood composite properties. *Wood Science and Technology* **47**:6, 1285-1319. [Crossref]
- 307. Jordan Klinger, Ezra Bar-Ziv, David Shonnard. 2013. Kinetic study of aspen during torrefaction. *Journal of Analytical and Applied Pyrolysis* 104, 146-152. [Crossref]
- 308. Yu-Fong Huang, Pei-Te Chiueh, Wen-Hui Kuan, Shang-Lien Lo. 2013. Microwave pyrolysis of rice straw: Products, mechanism, and kinetics. *Bioresource Technology* 142, 620-624. [Crossref]
- 309. W Reschetilowski. 2013. Alternative resources for the methanol economy. Russian Chemical Reviews 82:7, 624-634. [Crossref]
- 310. Ke-Miao Lu, Wen-Jhy Lee, Wei-Hsin Chen, Ta-Chang Lin. 2013. Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. *Applied Energy* **105**, 57-65. [Crossref]
- 311. David N Thompson, Timothy Campbell, Bryan Bals, Troy Runge, Farzaneh Teymouri, Leslie Park Ovard. 2013. Chemical preconversion: application of low-severity pretreatment chemistries for commoditization of lignocellulosic feedstock. *Biofuels* 4:3, 323-340. [Crossref]
- 312. P. Rousset, K. Fernandes, A. Vale, L. Macedo, A. Benoist. 2013. Change in particle size distribution of Torrefied biomass during cold fluidization. *Energy* 51, 71-77. [Crossref]
- 313. Zahra Tooyserkani, Linoj Kumar, Shahab Sokhansanj, Jack Saddler, Xiaotao T. Bi, C. Jim Lim, Anthony Lau, Staffan Melin. 2013. SO2-catalyzed steam pretreatment enhances the strength and stability of softwood pellets. *Bioresource Technology* 130, 59-68. [Crossref]
- 314. . References 495-514. [Crossref]
- 315. Tyler L Westover, Manunya Phanphanich, Michael L Clark, Sharna R Rowe, Steven E Egan, Alan H Zacher, Daniel Santosa. 2013. Impact of thermal pretreatment on the fast pyrolysis conversion of southern pine. *Biofuels* 4:1, 45-61. [Crossref]
- 316. Kaushlendra Singh, Shahab Sokhansanj, James Dooley. 2013. Wood as an advanced feedstock for bioenergy: scale matters. *Biofuels* 4:1, 13-16. [Crossref]
- 317. Pak Sui Lam, Zahra Tooyserkani, Ladan Jafari Naimi, Shahab Sokhansanj. Pretreatment and Pelletization of Woody Biomass 93-116. [Crossref]
- 318. Bimal Acharya, Idris Sule, Animesh Dutta. 2012. A review on advances of torrefaction technologies for biomass processing. Biomass Conversion and Biorefinery 2:4, 349-369. [Crossref]
- 319. Y.F. Huang, W.R. Chen, P.T. Chiueh, W.H. Kuan, S.L. Lo. 2012. Microwave torrefaction of rice straw and pennisetum. *Bioresource Technology* 123, 1-7. [Crossref]
- 320. Jaya Tumuluru, Richard Boardman, Christopher Wright, J. Hess. 2012. Some Chemical Compositional Changes in Miscanthus and White Oak Sawdust Samples during Torrefaction. *Energies* 5:10, 3928-3947. [Crossref]
- 321. Shoujie Ren, Hanwu Lei, Lu Wang, Quan Bu, Yi Wei, Jing Liang, Yupeng Liu, James Julson, Shulin Chen, Joan Wu, Roger Ruan. 2012. Microwave Torrefaction of Douglas Fir Sawdust Pellets. *Energy & Fuels* 26:9, 5936-5943. [Crossref]
- 322. Jaya Shankar Tumuluru, J. Richard Hess, Richard D. Boardman, Christopher T. Wright, Tyler L. Westover. 2012. Formulation, Pretreatment, and Densification Options to Improve Biomass Specifications for Co-Firing High Percentages with Coal. Industrial Biotechnology 8:3, 113-132. [Abstract] [Full Text] [PDF] [PDF Plus]