

Introduction to BIOMASS TORREFACTION

How torrefied wood fuel could replace coal

Michael Wild Wild&Partner Vienna, Austria An online contribution to the BIOENERGY ASSOCIATION'S webinar series

September 7th 2022

INTRODUCTION TO TORREFACTION OF BIOMASS

- 1. HOW DOES BIOMAS ARISE AND WHAT IS IT
- 2. WHAT IS HAPPENING IF BIOMASS IS EXPOSED TO HEAT
- 3. M&E BALANCE OF TYPICAL PROCESS SETUP
- 4. COMPARISON OF DIFFERENT CARBONISATION LEVELS
- 5. INTEGRATED TORREFACTION LINE
- 6. DIFFERENT REACTOR TYPES
- 7. POSSIBILITIES IN SETTING UP THE VALUE CHAIN
- 8. DENSIFICATION AND PRODUCT FORM FACTORS
- 9. THE PRODUCTS , PRODUCT STANDARDS
- 10. EXPERIENCES IN COAL POWER AND STEEL INDUSTRY INITIATIVES
- **11. SUSTAINABILITY**
- 12. INTRODUCTION OF COMPANIES ACTIVE IN BIOCARBON

What is plant biomass and how does it arise

©Wild&Partner

What is plant biomass chemically

Wood biomass typically has the following elemental composition on a dry mass basis,

•	Carbon	50 %
•	Oxygen	41%
•	Hydrogen	6%
•	Nitrogen, Sulfur, Ash	3%

The combustible elements of wood are

•	Carbon	88 %
•	Hydrogen	12 %
	+ the traces of Sulfur	0,02%
The energy ratio of wood con	nbustion is	

•	Energy from Carbon	67 %

• Energy from Hydrogen 33 %

Torrefaction breaks up and reduces low energy-containing oxygen-rich compounds,

©Wild&Partner

Understanding the basic composition of biomass

minerals=ash 0,3-25%

1. WHAT IS HAPPENING IF BIOMASS IS EXPOSED TO HEAT

- 2. M&E BALANCE OF TYPICAL PROCESS SETUP
- 3. COMPARISON OF DIFFERENT CARBONISATION LEVELS
- 4. INTEGRATED TORREFACTION LINE
- 5. DIFFERENT REACTOR TYPES
- 6. POSSIBILITIES IN SETTING UP THE SUPPLY CHAIN
- 7. DENSIFICATION AND PRODUCT FORM FACTORS
- 8. PRODUCT STANDARDS
- 9. EXPERIENCES IN COAL POWER AND STEEL INDUSTRY INITIATIVES
- 10. SUSTAINABILITY

What happens to Biomass under Heat

Quelle: ECN report ECN-C-05-013

Decomposition under thermal influence

Torrefaction will first lead to Hemi-Celluloses decomposition and only at higher temperatures the Cellulose will follow. Mild torrefaction will also keep a higher proportion of the lignin in tact resulting in better pelletability of product

©Wild&Partner

W&P

Source and Copyright: M. Englisch, H.Hofbauer, M. Wild

Why do we Torrefy? Producing a Carbon product for many applications

- ✓ Feedstock homogenisation
- ✓ Broadening feedstock base
- ✓ Concentrate calorific value
- ✓Improve storage and handling
- ✓ Build on existing coal infrastructure
- ✓ Lowers transport costs
- ✓ Reduce water uptake
- ✓ Fungible products
- ✓ Direct steam coal substitute

- ✓ Reduce biologic degradation to 0
- ✓ Increase grindability
 ✓ Better pneumatic transport
- Better pneumatic transport and burn out characteristics
- ✓ Higher combustion temperature
- \checkmark Higher Carbon concentration
- ✓ Renewable input material for all carbon demanding processes
- ✓Increased supply chain efficency
- ✓ Value creation
- \checkmark and many more

- 1. WHAT IS HAPPENING IF BIOMASS IS EXPOSED TO HEAT
- 2. M&E BALANCE OF TYPICAL PROCESS SETUP
- 3. COMPARISON OF DIFFERENT CARBONISATION LEVELS
- 4. INTEGRATED TORREFACTION LINE
- 5. DIFFERENT REACTOR TYPES
- 6. POSSIBILITIES IN SETTING UP THE SUPPLY CHAIN
- 7. DENSIFICATION AND PRODUCT FORM FACTORS
- 8. PRODUCT STANDARDS
- 9. EXPERIENCES IN COAL POWER AND STEEL INDUSTRY INITIATIVES
- 10. SUSTAINABILITY

Principle and Simplified M&E Balance

M&E Balance belt drier, drum reactor

W&P

ACB-Process

- 1. WHAT IS HAPPENING IF BIOMASS IS EXPOSED TO HEAT
- 2. M&E BALANCE OF TYPICAL PROCESS SETUP
- 3. COMPARISON OF DIFFERENT CARBONISATION LEVELS
- 4. INTEGRATED TORREFACTION LINE
- 5. DIFFERENT REACTOR TYPES
- 6. POSSIBILITIES IN SETTING UP THE SUPPLY CHAIN
- 7. DENSIFICATION AND PRODUCT FORM FACTORS
- 8. PRODUCT STANDARDS
- 9. EXPERIENCES IN COAL POWER AND STEEL INDUSTRY INITIATIVES
- 10. SUSTAINABILITY

Thermochemical Gradient

쏬

Different Carbonisation Levels Different Product Portfolio

- 1. WHAT IS HAPPENING IF BIOMASS IS EXPOSED TO HEAT
- 2. M&E BALANCE OF TYPICAL PROCESS SETUP
- 3. COMPARISON OF DIFFERENT CARBONISATION LEVELS
- 4. INTEGRATED TORREFACTION LINE
- 5. DIFFERENT REACTOR TYPES
- 6. POSSIBILITIES IN SETTING UP THE SUPPLY CHAIN
- 7. DENSIFICATION AND PRODUCT FORM FACTORS
- 8. PRODUCT STANDARDS
- 9. EXPERIENCES IN COAL POWER AND STEEL INDUSTRY INITIATIVES
- 10. SUSTAINABILITY

Special case "Batch Process" for demanding applications

A batch process on the example of retorts permits a very precise application of temperature to each particle of biomass by this providing also a very good process control.

Tbatch processes therefore are not primarily oriented to produce a commodity fuel, but to establish itself in the area of special products.

This begins with high-quality barbecue coals and extends to the area of pharmaceutical carbon compounds. Approval for this has already been granted to one of our members.

W&P

TRL9

- 1. WHAT IS HAPPENING IF BIOMASS IS EXPOSED TO HEAT
- 2. M&E BALANCE OF TYPICAL PROCESS SETUP
- 3. COMPARISON OF DIFFERENT CARBONISATION LEVELS
- 4. INTEGRATED TORREFACTION LINE
- 5. DIFFERENT REACTOR TYPES
- 6. POSSIBILITIES IN SETTING UP THE SUPPLY CHAIN
- 7. DENSIFICATION AND PRODUCT FORM FACTORS
- 8. PRODUCT STANDARDS
- 9. EXPERIENCES IN COAL POWER AND STEEL INDUSTRY INITIATIVES
- 10. SUSTAINABILITY

Process steps in a torrefaction value chain

Basically the value chain is build of up to 5 steps from gate of first processing installation to final deliverd product. While it seems logic that first 3 steps are unavoidably located at place of feedstock origin it may be worthwhile analysing if location of final steps at place of consumption provide advantages

W&P

- 1. WHAT IS HAPPENING IF BIOMASS IS EXPOSED TO HEAT
- 2. M&E BALANCE OF TYPICAL PROCESS SETUP
- 3. COMPARISON OF DIFFERENT CARBONISATION LEVELS
- 4. INTEGRATED TORREFACTION LINE
- 5. DIFFERENT REACTOR TYPES
- 6. POSSIBILITIES IN SETTING UP THE SUPPLY CHAIN
- 7. DENSIFICATION AND PRODUCT FORM FACTORS
- 8. PRODUCT STANDARDS
- 9. EXPERIENCES IN COAL POWER AND STEEL INDUSTRY INITIATIVES
- 10. SUSTAINABILITY

Densification

Biomass once torrefied will have a bulk density of <150kg/m³ and is prone to form plenty of fines <500microns

Densification is a must for several resons

Reducing risks and costs that go along with powder storage and transportation Increase of bulk density to make product transportable Reduction of selfignition risk Allowing to store in open yards Ability to use standard bulk carriers (IMSBC prohibits the transport of non densified bulk carbonised biomass) Possibility to add binders or coatings Building commodity status

W&P

- 1. WHAT IS HAPPENING IF BIOMASS IS EXPOSED TO HEAT
- 2. M&E BALANCE OF TYPICAL PROCESS SETUP
- 3. COMPARISON OF DIFFERENT CARBONISATION LEVELS
- 4. INTEGRATED TORREFACTION LINE
- 5. DIFFERENT REACTOR TYPES
- 6. POSSIBILITIES IN SETTING UP THE SUPPLY CHAIN
- 7. DENSIFICATION AND PRODUCT FORM FACTORS
- 8. THE PRODUCTS , PRODUCT STANDARDS
- 9. EXPERIENCES IN COAL POWER AND STEEL INDUSTRY INITIATIVES
- **10. SUSTAINABILITY**

Volume Product: Fuel for Pulverized Coal Power Plants

Value Products: Fuel for Heating Fuel for Process Energy Needs Blast Furnace Injection Carbon (SSAB Brahestad) Feedstock for Gasification Soil enhancer Carbon provider for Plastics industry Activated Carbon Products for new (niche) markets

able a

Table 2 - Specification of

ded pellets produced by thermal processing of nor

Solid biofuels -Fuel specifications and classes

ISO TS 17225 - 8:

Part 8: Graded thermally treated and densified biomass fuels

Currently the TS- Technical Specification is in the process of upgrading the to a full Standard

New: Parameter values not realted to mass only but also to energy content

Water sorption and grindability newly included

Discussions in parallel to include non energetic use or to establish supplementing standards i.e. char for metalurgical purposes

		duran	by therm	al process	ing of wo	body biomas	-		TA1			
able 1 - Specification of g	raded pelle	ts produced	i by there			TW2H	TW3L	2. 1 Herbaceo	us biomas		TA2	
able 1 optimised		TWIH	TW1L	TW2H	TW2L	IWJII		horticultu	ire and	2. Herba	aceous	
perty class, Analysis method	Unit	IWIII			tation	1 1 Forest, pla	ntation	2.2.1 By-produ		Diomass 3. Emili		2. Herba
mative	1	1 1 Whole tre	es without	1.1 Forest, p	antation	and other virg	in wood	residues from f	cts and	4. Aquat	nomass	3. Fruit 1
in and source.	1	roots		and other vi	gill wood	1.2 By-produ	cts and	herbaceous pro	Cessing	qual	c biomass	4. Aquati
17225-1 Table 1		1.1.3 Stem	wood	1.2 By-proc	m wood	residues from	n wood	undustry, chemi	cally	1		
17200		1.1.4 Logging	residues	residues in	industry	processing in	ndustry	residues	ceous	1		1
		1 2.1 Chemicall	y untreated	1 2 1 Che	mically	1.3.1 Chem	lically	3.1 Orchard and		1		1
	1	wood by-pro	ducts and	1.5.1 Che	sed wood	untreated us	ed wood	fruit	horticultu	e		
		residu	es ^a	untreated t	25 D + 1:	D06 to D2	5, D ± 1;	3.2.1 By-products		1		
		D06, 6	5±1;	D06 to D	1 < 40	3,15 ≤ 1	<u>≤</u> 40	residues from foo	dande	1	1	
meter, D ^b and Length L ^c	mm	D08,	B±1;	5,15 S	6 to D10)	(from D06	to D10)	chemics?	y,	1		
17829		3,15≤	L≤40	2 15	1.< 50	3,15≤1	. <u>≤</u> 50	residues	ed fruit	1		
cording Figure 1	1			(from D	2 to D25)	(from D12	to D25J	4. Aquatic hioma		1	1	
			10	MORCS	M10 < 10	M10 ≤	10	D06 to D25 p		1		
	147.9/2	M08 ≤ 8	M10 ≤ 10	MUOSO				3,15 < 1. < 4	±1;	D06 to D25		
pisture, M ^d ,	as received.						10	(from D06 to D	100	3,15 <1.	D±1; D	06 to D25
0 18134-1, ISO 18134-2	wet basis			A3.0	< 3,0	A5.0	5,0	3,15 < L ≤ 50	0	(from D06 to	Dim	3,15 < L <
	w-% dry	A1.2	<u>≤1,2</u>	DU96	0 > 96,0	DU95.0	≥ 95,0	throm D12 to D2	25)	3,15 < L s	50 (fi	rom D06 to
sh, A, ISO 18122	w-%	DU97.5	5≥97,5	0000	-		720 < 30	$M10 \leq 10$		urom D12 to	D25) (fr	3,15 < L ≤
lechanical durability, DU,	as received		P10 + 10	F4.0 < 4.	$F2.0 \le 2$,0 F6.0 ≤ 6,0	F3.0 ≤ 3,0		1	M10 ≤ 10	un	M10
30 17831-1	w-%	F2.0 ≤ 2,0	F1.0 ≤ 1,0	FT.0 2 .,				A5.0 < 5.0				10≤10
ines, F °, ISO 18846	as received			-			ant to be	DU97.5 2 97 5		A10.0 < 10.0		
	w-% dry	-	4,	d Type and	amount to	be Type and a	mount to be			DU96.5 2 96	Value Value	le to be sta
dditives		Type and amo	ount to be stat	s	tated	sta	1 0 × 21 0	F2.0 ≤ 2,0	\rightarrow	- 70,	DI	J95.0 ≥ 95
			0 (21)	$0_d \ge 21$,0 Qd < 21	$L_{,0} Q_{d} \ge 21,0$	01 < 5.8	Tum		F2.0 ≤ 2,0		
	MI/kg or	Q _d ≥ 21,0	Qa < 21,	Q _d ≥5	8 Qd < 5	,8 Qa≥5,8	Qa sole	to be	T		F	3.0 ≤ 3,0
let calorific value, Qas,	kWh/kg	Q _d ≥ 5,8	Qa-Sic	Value	to be state	d Value t	o be stated	018 > 19	- 13	pe and amour	t Type	
ISO 18125	dry basis	Value	to be stated	BD	50 > 650	BD55	0≥550	Q5.0 > 5.0		017 > 17	to	and amou
	kg/m ³	BD650 ≥ 65	0 BD700≥	Value	to be state	d Value to	be stated	Value to be stated		Q4.7 > 4.7		oe stated
Bulk density, BD ,	as received	Value	to be stated	Value			- ho stated	BD600 ≥ 600	Val	ue to be stated	Value t	to be state
ISO 17828		Turue	he stated	Value	to be state	d Value t	0 be stated	alare a second	B	D600 ≥ 600	+	
100 16049	w-% dry	Value	to be stated	N	$0.4 \le 0.4$	NI	1 < 0.1	N1 F stated	Valu		BD55	50 ≥ 550
Carbon, C, ISO 16948	w-% dry	N	0.4 ≤ 0,4	SC	$.05 \le 0,05$	SO	1 < 0,1	N1.5 ≤ 1,5	Valu	e to be stated	Value	
Nitrogen, N, ISO 16948	w-% dry	S0.	04 <u>< 0,04</u>	CI	$0.05 \le 0.05$	Clo	0.1 ≤ 0,1	CI0.1 ≤ 0,1	9	2.0 ≤ 2,0	N2 C	be stated
Sulphur, S, ISO 16994	w-% dry	C10	.03 <u><</u> 0,03		< 2		<2	52	C	0.2 ≤ 0,2	S0 3	52,5
Chlorine, Cl, ISO 16994	mg/kg dr	y	<u><1</u>		<1		≤2	51		52	C10.3	503
Arsenic, As, ISO 16968	mg/kg dr	v	≤ 0,5		< 15		<u><</u> 15	≤ 50		51	Value to b	e stated
Cadmium, Cd, ISO 16968	mg/kg dr	v	<u>< 10</u>		< 20		<u>< 20</u>	≤ 20		≤ 50	Value to b	e stated
Chromium, Cr, ISO 16968	mg/kg dr	v	<u>≤</u> 10		< 10		<u>< 10</u>	<u>≤ 10</u>		\$ 20	Value to be	e stated
Copper, Cu, ISO 16968	mg/kg di	TV I	<u><</u> 10		<01		≤ 0,1	0,1		10	Value to be	stated
Lead, Pb, ISO 16968	ing/kg di		≤ 0,1		< 10		<u>< 10</u>	10	<	0,1	Value to be	stated
Mercury, Hg, ISO 16968	mg/kg di	ry ry	< <u>≤</u> 10		<100		<u><100</u>	200	5	10	Value to be	stated
Nickel, Ni, ISO 16968	mg/kg u	1 y	< 100		< 100	ted Valu	e to be stated	bestated	Value to	00	Value to be	stated
Zinc Zn. ISO 16968	mg/kg u	Valu	ie to be stated	Va	ue to be sta	ateu		2 Stated		be stated	alue to be	stated
Volatile matter, VM, ISO 1812	23 w-% di	y				1 T	o be stated	erated	Should b	e stated	003	lated
tu formative			To be stated		To be state	a				stated	hould be st	ated
the molting behaviour h,	oC					ills during prod	uction of	-% Mavimus				u
ISO 21404	1 albert	timber product	tion additives	(< 1 w-%) us	ed in sawin	ellets are clearly	within the		ength shall	be ≤ 45 mm		
Negligible levels of glue, gr	ease and other	are accepta	ble if all chem	ical paramet	rs of the p			d according sta	ndand too	and and		
timber and timber product	from virgin wo	to be concern	ed with.					sing aids, slaggi	ng inhibit	18846.		
limits and/or concentratio	ns are too sman	tated for TW1H	and TW1L.	Manimum	anoth shall	be $\leq 45 \text{ mm}$.		4.0	ing mulbito	ors or any othe	Taddis	
Selected size D06 or D08 d	f pellets to be a	ver than 40 mm	n can be 1 w-%	. Maximum	Cin Ban and			theuld in the	emperatur		additives	like
For D06 to D10 the amount	it of penets tong			according st	andard ISO	18846.	additivos lika	around be state	d.	e (DT), hemisp	ohere	
At the point of delivery.	nes less than 3.	15 mm are scr	eened by hand	ing aids, slag	ging inhibit	tors or any othe	r additives like					
 At the point of delivery. Fi 	roduction, deliv	ery or combus	tion (e.g. pres	ang anus, sing			mtont (M) 8%	s				
Type of additives to aid pl	flour, vegetable	oil, lignin).	in analysis of	dry basis 21	,00 MJ/kg	and moisture co	intent (Pi) 070					
starch, corn flour, potato	ived (0) resulti	ing from net ca	lorific value of	5 MI/kg (5.2)	Wh/kg).	(DID) hand	mhere					
8 Net calorific value as rece	and by 10 %	moisture conte	nt [M] 15 18,0), deformatio	n temperat	ture (DT), nemi	Photo	(D/V/il	d&Par	tner	
	a second and a second sec	the torn	meraline 1001						~ v v II	uxidi	1.1.11.1	
19,13 MJ/kg (5,3 KWII/k)	atures (shrinka	ge starting ten	ing condition	s should be s	ated.			-				

Documentation, Permissions and Registrations

All testing to date results in: equal or superior to wood pellets

©Wild&Partner

- 1. WHAT IS HAPPENING IF BIOMASS IS EXPOSED TO HEAT
- 2. M&E BALANCE OF TYPICAL PROCESS SETUP
- 3. COMPARISON OF DIFFERENT CARBONISATION LEVELS
- 4. INTEGRATED TORREFACTION LINE
- 5. DIFFERENT REACTOR TYPES
- 6. POSSIBILITIES IN SETTING UP THE SUPPLY CHAIN
- 7. DENSIFICATION AND PRODUCT FORM FACTORS
- 8. PRODUCT STANDARDS
- 9. EXPERIENCES IN COAL POWER AND STEEL INDUSTRY INITIATIVES
- 10. SUSTAINABILITY

Torrefied Biomass in Power Plants Combustion Preparation Storage

Confirmation of superior characteristics of torrefied pellets

No adverse effect on milling and combustion detected

Low dust formation

Torrefied biomass can replace coal in power plants

co-firing 5-100%:

Vattenfall **Essent - RWE GDF Suez - ENGIE** Dong **Portland General Electric**

DONG Studstrup-3 experience

- Two units with total capacity of 714 MW_a and 986 MW_{th}
- Dedicated milling on MPS roller mill adapted for either coal or white pellets
- 200 tons of Andritz/ECN torrefied spruce pellets during 8 hours trial
- Co-firing share: 33 wt%
- Observations:
 - No dust formation during unloading
 - Sufficiently high durability; no issues with dust formation in chain conveyors
- Normal Minimum Ignition Energy (MIE)
- ECN conducted lab-scale characterisation of pellets Source: ECN

Source and Copyright: IBTC, www.Biomasstorrefction.org

Technically in all parameters superior to Wood Pellets

Minimum Ignition Energy Pulverised torrefied pellets vs. pulverised raw biomass chips

Fuel Morphology, pneumatic transport

Pellets stored 20 days at 20° C at 95% relative humidity

- Dry matter losses significantly higher for white wood pellets, compared with torrefied wood pellets
- Also after uncovered outdoor exposure for 3 months

Biological Degradation

Water Resistance

Mass

Source: Carbo et al. "Fuel pre-processing, pre-treatment and storage for co-firing of biomass and coal" in "Fuel Flexible Energy Generation" ed. J. Oakey, 2015

Torrefied Biomass in the Steel Industry

Biochar in Pyrometallurgical Applications

Other possible applications - Reducing agent in treatment of slags, ores, residues, wastes etc. - Lime stone activation

SSAB Raahe's pilot to use the biocoal

Swedish-headed steel producer <u>SSAB</u> has disclosed test results revealing the usage of biocoal in the blast furnace at their SSAB Brahestad steelworks in Finland. Tests show that up to a 10% of biocoal blend is possible, which would reduce fossil carbon dioxide (CO2) emissions by 100,000 tonnes a year https://www.ssab.com/News/2019/05/Every-tiny-step-you-take-counts-a-lot

+ pilot trials in the electric arc furnace that belongs to SWERIM (formerly Swerea MEFOS). Among other things, we will be testing different biocoals, smelting properties in different hydrogen-reduced DRIs and different slag processes

Torero by Arcelor Mital cofunded by EU

- Wood waste is converted to biocoal by torrefaction in Ghent plant
- Biocoal replaces fossil powdered coal in a steel mill blast furnace
- Carbon monoxide in blast furnace exhaust fumes is microbially fermented to bioethanol STEELANOL http://www.torero.eu.

Arcelor Mital projects in France and Spain as continuation of Ghent project

ELKEM Ferrosilicon Alloys

20 % biocarbon in its production in Norway , working towards increasing this to 40 % by 2030

Iron & Steel Industry, large scale demonstration tests

- ArcelorMittal Dofasco (Hamilton, ON) has conducted demonstration tests using biochar as a substitute for PCI coal, planned in 2021
- Within a few years, the consumption of dry biomass could exceed 100K tonne/yr

Canadian Iron Ore Pellets Production

- ArcelorMittal Mining Canada (Port-Cartier, QC), producer of iron ore concentrate and pellets, uses 220 000 tonnes/yr of coke breeze that could be replaced by biochar
- This corresponds to nearly 1 Mtonne/yr of dry biomass

Ferrosilicon alloys Manufacturing

- Elkem made an announcement in fall 2020 of its plan to build a biocarbon pilot plant in Chicoutimi, Quebec
- Elkem already uses close to 20 % biocarbon in its production in Norway and working towards increasing this to 40 % by 2030

- 1. WHAT IS HAPPENING IF BIOMASS IS EXPOSED TO HEAT
- 2. M&E BALANCE OF TYPICAL PROCESS SETUP
- 3. COMPARISON OF DIFFERENT CARBONISATION LEVELS
- 4. INTEGRATED TORREFACTION LINE
- 5. DIFFERENT REACTOR TYPES
- 6. POSSIBILITIES IN SETTING UP THE SUPPLY CHAIN
- 7. DENSIFICATION AND PRODUCT FORM FACTORS
- 8. PRODUCT STANDARDS
- 9. EXPERIENCES IN COAL POWER AND STEEL INDUSTRY INITIATIVES

10. SUSTAINABILITY

Biomass Sustainability Certification Systems

Certification System	CoC	Certificates	Feedstock	Solid &	GHG
	Certificates	(pellets & chips)		Liquid	Data
FSC (Forest Stewardship Council) – www.fsc.org	36.727	3231	wood	S	No
PEFC (Program for the Endorsement of Forest Certification					
Schemes – www.pefc.org	22.142	1255	wood	S	No
RSB (Round table on Sustainable Biomaterials) –					
www.rsb.org	15	1	wood & agri	S&L	Yes
GGL (Green Gold Lable) - www.greengoldcertified.org	14	14	wood	S	Yes
BetterBiomass - www.betterbiomass.com	94	31	wood & agri	S&L	Yes
ISCC - www.iscc-system.org	3.280	0	wood & agri	L	Yes
SBP (Sustainable Biomas Program) - www.sbp-cert.org	169	169	wood	S	Yes
Red Cert www.redcert.org	1825	0	wood & agri	L	Yes
RSPO (Round table for sustainable Palm Oil)					
https://rspo.org	2090	0	agri	L	Yes
Bonsucro (Better Sugar Initiative) www.bonsucro.com	140	0	agri	L	Yes

www.rsb.org

Energy Consumed along the chain

For Torrefied and Carbonized Biomass in % of Wood Pellet chain

	WWP	ТР		WWP	TP		WWP	TP
	MJ/mt	MJ/mt		MJ/GJ	MJ/GJ		1,00	%
till gate	627,75	758,47	till gate	35,75	34,17	till gate	1,00	0,96
processing	2.262,72	2.980,04	processin	128,86	134,24	processi	1,00	1,04
to port	36,24	36,24	to port	2,06	1,63	to port	1,00	0,79
loading	16,67	6,46	loading	0,95	0,75	loading	1,00	0,79
shipping HS	987,19	891,21	shipping I	56,22	40,15	shipping	1,00	0,71
unloading to c	86,07	86,07	unloading	4,90	3,88	unloadin	1,00	0,79
total	4.016,64	4.758,48	total	228,74	214,81	total	1,00	0,94

loading

	WWP	BCP30		WWP	BCP30		WWP	BCP30
	MJ/mt	MJ/mt		MJ/GJ	MJ/GJ		1,00	%
till gate	434,58	1.096,76	till gate	25,97	35,57	till gate	1,00	1,37
processing	2.181,83	1.391,45	processin	130,40	45,13	processi	1,00	0,35
to port	93,76	93,76	to port	5,60	3,04	to port	1,00	0,54
loading	16,67	6,46	loading	1,00	0,54	loading	1,00	0,54
shipping HS	892,70	967,09	shipping I	53,35	31,37	shipping	1,00	0,59
unloading to c	86,07	86,07	unloading	5,14	2,79	unloadin	1,00	0,54
total	3.705,61	3.641,59	total	221,47	118,44	total	1,00	0,53

Source and Copyright: Michael Wild

W&P

Source: D. Thrän, DBFZ

W&P

IBTC Membership summer 2022

Contact

Michael Wild

Wild & Partner LLC michael@wild.or.at

Rohrbacherstrasse 9 A-1130 Vienna T +43 1 879 99 57 Skype: wildwien

Some of the known facilities in construction, commissioning or operation

The thermal treatment of the biomass during the torrefaction process can reduce the organically bound chlorine up to 90%

By this Torrefaction is opening up the energy and biocarbon market for agricultural by products, grassy crops and other underutilized biomasses with unacceptable high Chlorine content

This may result in a significant reduction in the feedstock costs Positive side effect: no sustainability concerns

Non exhaustive list

Company	Project	Locatio n (countr y)	Status	Planned comission ing	Name plate capacity	Feedstock	Intended NCV	Product form factor (pellet, briquette)
	Surat Thani	Thailand	Under development	Q32020	35.000 tonnes	Rubberwood	21 MJ/kg	Pellets
	Commercial Scale	Valongo, Portugal	Under construction	Deliveries start in	120.000 TP 55.000 WWP	Eucalyptus and Pine	21 MJ/kg	Pellet
FUIERRAFUELS				TP 2021				
NextFuel	NextFuel Production Facility	Frohnleit en / Austria	In Operation	since 2013	8.000t/a	miscanthusw ood chips, B- wood	22-23 MJ/kg	Briquette 70mm diameter
TORR COAL	Dilsen Stokkem	Belgium	In Operation	Since 2011 (2019)	15.000 t/a	Hardwood, Softwood	21-25MJ/kg	Briquettes, Pellets
NextFuel		Finland	engineering	Q3 2022	50.0000t/a	Pine	21 MJ/kg	Briquettes

Non exhaustive list

Company	Project	Locatio n (countr y)	Status	Planned comission ing	Name plate capacity	Feedstock	Intended NCV	Product form factor (pellet, briquette)
Biomass Energy	Green Carbon	Üllitz, Germany	In operation	2016	3.000 t/a	mostly hardwoods.	Charcoal/bioco al with Cfix 90- 98%.	Charcoal. Size Up to 150 mm.
POLYTECHNIK Biomass Energy	Green Carbon	Zagreb, Croatia	Comissioning	2021	4.500 t/a + 1000 kWe electricity	mostly hardwoods.	Charcoal/bioco al with Cfix 90- 98%.	Charcoal. Size Up to 150 mm.
	White Castle	USA (Louisian a)	In operation	Since 2017	16.000 tonnes/a	Bagasse	19MJ/kg	Pellets, Briquettes
	Hazelton Biocoal Energy	Canada (BC)	Construction	Q1 2022	100.000 tonnes	Softwood	21 MJ/kg	Pellets
	Becancour	Canada (Qc)	In operation	Since 2016	15.000 tonnes	Softwood	21 MJ/kg	Pellets

W&P

Non exhaustive list

	Company	Project	Location (country)	Status	Planned comissio ning	Name plate capacity	Feedstock	Intended NCV	Product form factor (pellet, briquette)
	Advanced Fuel Solutions	Oliveira de Azeméis	Portugal	Under construction	2020	100.000mt/a	Softwood	23/30MJ/kg	Pellets
GF	REENCARBON	Arkangels k oblast	Russia	Under permissioning	Q2 2023	2 x 40.000 mt/a	Softwood	21-25MJ/kg	Pellets
Or	egon torrefaction		USA (Oregon)	Under construction	Q3 2019	90.000mt/a	Softwood	21-22,5MJ/kg	Pellets, Briquettes
Во	real Bioenergy	McBride, BC	Canada	Project closing	na	250.000 to be increased	Softwood	21-23MJ/kg	
Ars	sari	Kalimanta n	Indonesia	In final negotiation	delayed	80.000 to be increased	Softwood	21MJ/kg	Briquettes, Pellets
ΗN	13 Energy Inc.	Troutdale	USA (Oregon)	Under construction		100.000 mt/a	Softwood		TorrB® torrefied biomass briquettes

W&P

Non exhaustive list

Company	Project	Location (country)	Status	Planned comissio ning	Name plate capacity	Feedstock	Intended NCV	Product form factor (pellet, briquette)
Yilkins	Ruurlo Demo	NL	In operation	2019	5.000mt/a	Softwood	21/30MJ/kg	Pellets
National Carbon	California 1+2	USA	Under permissioning	Q2 2023	2 x 100.000 mt/a	Softwood	21-23MJ/kg	Pellets, Briquettes
National Carbon		USA (Minnesota)	In operation		90.000mt/a	Softwood	21-30MJ/kg	Pellets, Briquettes
AGI Capital	Nehoiu	Romania	Pellet Mill upgrade	Q2 2023	120.000	Softwood	21-23MJ/kg	Pellets, Briquettes
CEG	UK	Indonesia	In operation	2016	40.000	Mixed wood	21MJ/kg	Pellets
Perpetual Next	Baltania	Estonia	In commissionin g		180.000 mt/a	Softwood	21MJ/kg	Pellets

Characterisation of Torrefaction Reactor types

VVO	eP

Reactor Type	Advantages	Limitations	Special Adjustments	Reactor Type	Advantages	Limitations	Special Adjustments
Rotary drum dryers	 Various methods to control torrefaction process (length, slope angle, rotation speed, temperature, filling level) Drum can be direct and indirect heating Available for all temperature ranges Uniform heat transfer Ability to take wide range of biomass sizes and waste types Classification of particles - Smaller particles will pass faster Widely proven technology for biomass drying and heating 	 Lower heat transfer Poor temperature control May increase fines due to friction between biomass and drum wall Typical unit capacity is at 10-12 t/h input, or 5 t/ h torrefied product, no experience with larger drums in biomass high temperature treatment 	 Indirect heated drums are standard for torrefaction Baffles or tube bundles increase heat transfer and efficiency and simplify control Calciner style reactors with very good temperature control 	Belt Dryer in form of Vibrating belts	 Better temperature control Ability to take wide range of biomass sizes Easy control of residence time through the speed and length of the belt respectively vibration frequency Proven technology in biomass drying industry 	 Homogenous particle size necessary Not suitable for materials of low bulk density Limited upscaling potential since capacity is dependent on the surface area of the belt (other systems are volume dependent) Potential of clogging with torrefaction tars of open belt structures Temperature limitation System has many mechanical parts, which increases maintenance costs Large footprint 	Steel belts only - because of high temperatures vibrating belt
Moving bed reactor	 Relatively simple, low cost reactor High throughput capacity No moving parts Also applicable for materials of lower density Good heat transfer Simple control by temperature and volumetric throughput 	 Difficult temperature control respectively control of homogenous heat distribution in the bed Risk of gas channel formation in biomass leading to non-uniform torrefaction unfortunate partial compression of biomass particles can lead to pressure drops resulting in system shut down 		Multiple Hearth Drier	 Ability to take wide range of biomass sizes Scalable technology (8 m of diameter possible) 	 increased risk of torrgas condensation making process less sustainable and gas combustion leads to moisture production in the flue gas. This gives a lower efficient combustion of the flue gas 	

Characterisation of Torrefaction Reactor types

Reactor Type	Advantages	Limitations	Special Adjustments
Microwave reactors	 Radiation based heat transfer instead of convection and conduction High heat transfer and fast torrefaction Heat transfer less dependent on the size of the biomass particle - ability to use large size biomass Very responsive in the control Modular 	 Used mostly in preservation of timber for outdoor application Unproven technology for drying or torrefaction of biomass - effects of rapid heating of biomass not known Electric energy main source Uniformity of biomass heating seems problematic Requires integration with other conventional heaters to achieve uniform heating 	
Cyclone technology	 Low residence time (<100 s) Large throughput due to fast heat transfer and low residence time Scalable technology (to 25 t/h) No moving parts (low maintenance) 	 High utility fuel demand for preconditioning (sizing) of feedstock Homogenous, small particle size necessary Volumetric reactor capacity is limited High temperature leads to a greater loss of volatiles Risk of tar formation due to relative higher loss of volatiles 	

Reactor Type	Advantages		Special Adjustments
Heating screw reactors (augers)	 Relatively cheap reactor Better biomass flow Ability to take wide range of biomass sizes Proven technology 	 Unequal torrefaction as mixing inside biomass stream through screw channel is limited Need for thermo-oil as heat transfer medium Limited heat-transfer to inner layers of the biomass stream Limited scaling potential as the ratio of screw sur- face area/biomass volume is less attractive with larger screws Risk of tarr condensation in cooler and char formation in overheated zones 	

W&P

Torrefied Biomass in the steel making industry

Bio-char

Recycled steel →

Millions of tonnes of biomass/biochar will be needed to replace fossil fuel carbon

- 1. Iron ore briquettes or pellets contain ca. 4% carbon at 580 mil tonnes market size
- 2. Up to 25% replacement of pulverized coal injection (PCI) in blast furnace ironmaking
- 3. Up to 100% replacement of coke breeze for the induration of iron ore pellets
- 4. 5% substitution of metallurgical coal in cokemaking (slot ovens)
- 5. Replacement of coke briquettes by biochar briquettes
- 6. Up to 100% replacement of injection carbon (for slag foaming) and charge carbon (heat) in electric arc furnace (EAF) steelmaking

On average, it is estimated that the global steel industry uses about 2 billion tonnes of iron ore, 1 billion tonnes of metallurgical coal

©Wild&Partner

The biocarbon is mainly used as a reductant,

for example: **2** Fe₂O₃ + **3**C **---4** Fe + **3** CO₂

Additional Requirements to Fuels

W&P

- Significantly higher min. carbon content
- High mechanical strength requirements before and after the
 - reaction (compressive strength)
- Grindability
- The reactivity should be close to the level of coke
- Ash content
- Ash melting behavior
- Acidity of trace elements (pH)
- Flow characteristics
- Foaming prospens
 - Wettability
 - ecific Surface Are I more to come